The Golden Age

A JOURNAL OF FACT HOPE AND COURAGE

in this issue

THE SECOND HAND

IN
THE TIMEPIECE OF
GOD
An explanation respecting a complete change of calendar, with suggestions as to how the Calendar of Jehovah God can be put into effect easily and naturally, without any confusion

every other
WEDNESDAY
five cents a copy
one dollar a year
- Canada \mathcal{E} Forcign 1.25
Vol. XVI - No. 404
March 13, 1935

The Second Hand in mhe
Timepiece of God（Part 1）． 355
＂The Precious Things Put Forth＂， 355
An Intricate，Confusing Subjeet ． 356
The Gregorian Calendar ．．． 856
Gregorian Calendar and Apostles 857
The Old Roman Year ．．．．． 357
The Month of Maius ．．．．． 358
The Month of August ．．．． 358
The Days and the Hours ．．． 358
Latest Eeclesiastical Mudding ． 259
A Consideration of the Year ．． 359
When Do the Seasons Begin？，． 260
On Solomon＇s Porch－in Winter ． 361
The Length of the Year ．．．． 351
Extending the Gregorian
Calendar ．．．．．．．． 361
Projecting the Calendar
Backward.
Calculating the Equinoxes ．．． 362
Outline of Vernal Equiinoxes ．． 363
Result of Some Calculations ．． 364
Notes on Problems ．．．．．． 364
Date of Autumnal Equinox
4129 B．C．．．．．．．．． 365
God＇s Love of the Beautiful ．． 365
A Study of God＇s Months ．．． 366
＂A Faithful Witness in Heaven＂ 366
Calendar for 6,062 Years ．．． 367
God＇s Will Regarding Months． 367

Projection of the Gregorian Caicndar Back to Creation＝： 368
Lunations Ushoring In Years or Periods of Important Events ． 370
Learning Something About God＇s Months ．．．．．． 370
Iunation Experionce Table ．． 371
Astronomers Must Love Truth ． 371
The Moon Runs Fast 。 ．．．． 372
Metonic Cycle and the God of Order ．．．．． 373
Chart of Lunations 1886－1911 A．D．．．．．．． 374
Chart of Lunations 1912－1937 A．D．．．．．．． 375
Getting Ready to Explore the Past ．．．．．．．．． 376
Method of Calculating Lunations 377
Calculation Tables ．．．．．． 379
Chart for Changing Over Days and Hours of Gregorian Calen－ dar to Days and Hours of Calendar of Jehovah God 。 ， 380
＂So Teach Us to Number Our Days＂．．．．．．． 380
The Calendar of Jehovah God ． 380 Calendar
Jehovah＇s Year of Ransom 1903381
＂Man Became a Living Soul ．． 382
Using the Six－Thousand－Year
Calendar ．．．．．．．． 382

goLDen age publishing company，Inc．
117 Adams Street，Brooklyn，N．Y．，U．S．A．
Clayton J．Woodworth President Nathan H．Knorr Vice President
Charles 玉．Wagner Secretary and Treasurer
FIVE CENTS A COPY
$\$ 1$ a year，United States ；$\$ 1.25$ to Canada and all other countries，
NOTICE TO SUBSCRIBERS
RTMITTANCES ：For your own safety，remit by postal or express money order．When coin．or currency is lost in the ordinary mails，there is no Tedress．Remittances from countries other than those named below may be made to the Brooklyn office，but only by internaicionai postal money order．
RECEIPT of a new or renewal subscription will be acknowledged only when requested． Notice of explration is sent with the journal one month before subscription expires Notice of expination is sent with the journa
SEND CHANGE OF ADDEES direet to us rather than to the post office．Your request should reach us at least two weeks before the date of issue with which it is to take effect．Send Jour old as well as the new actaress．Copies will not be forwarded by the post offce to your new address unless extra postage is provided by you．
Publismed also in Bohemian，Danish，Dutch，Finnish，French，German，Greely，Japanese， Norwegian，Polish，Spanish，Swedish．
OFILCES HOR OTHER COUNTRIES
 South A fricar ：© Boston House Cape Town，South A rica
Entered as second－class matter at Brooklyn，N．Y．，under the Act of March 3， 1879.

The Golden Age

The Second Hand in the Timepiece of God

(In 3 Parts-Part 1)

AN EXPLANATION RESPECTLNG A COMPLETE CHANGE OF CALENDAR, WITH SUGGESTIONS AS TO HOW THE CALENDAR OF JEHOVAH GOD CAN BE PUT INTO EFFECT EASILY AND NATURALLY, WITHOUT ANY CONFUSION. Copyright, 1935, by Golden Age Publishing Co., Inc., Brooklyn, N. Y., U.S.A.

All Rights Reserved.

MATTERS have arisen recently to call sharp attention to the Gregorian calendar and its confusions, and to direct attention to the Word of God on the subject of time, with a consideration of what may be called the timepiece of God, the beautiful and orderly arrangement of the sun and moon as they were set in the heavens by the Creator "to rule over the day and over the night" (Genesis 1:18), 'to be for signs, and for seasons, and for days, and for years.'Genesis 1:14.

This is no nonsense, or worse than nonsense from the Great Pyramid in Egypt (built with mpaid slave labor), but there is now a wealth of information regarding the exact length of the year, and the exact length of the lunation (from one new moon to another), which makes all past history an open book, where the number of years involved is known, and where there is associated with those years some marked reference to the moon.

"The Precious Things Put Forth"

It is an interesting possibility indicated by Moses when he mentions "the precious things put forth by the moon". (Deuteronomy $33: 14$) In the beautifully working parts of His great timepiece Jehovah God has preserved evidence that will yet shame all the wise of the earth.

Does it not seem a very wonderful thing, a gift from Jehovah God, that Jehovah's people may now have a perfect calendar of the Lord's life, knowing, for example, in terms of the Gregorian calendar, with which all are familiar, the exact days of the week, month and year when, as a boy, He remained behind in the temple, asking and answering questions; that they may know the exact date when Moses came marching out of Egypt, the exact date the Jordan was crossed by the forces under Joshua, the exact
date Noah and his family went into the ark, and the day they came out, and the probable day of Adam's creation, all from the silent movements going on constantly by which the sun and the moon never get out of place or out of order, as do other clocks, but are far enough away that no mischief-maker can get at them to interfere?

It is so simple, when one gets into the subject, that it is passing strange that Jehovah's people never became interested in it before. Though the moon has its variations in speed, yet the mean lunation, 29 days 12 hours 44 minutes 2.864 .976 seconds (2551442.864976 seconds), is one of the definite fixtures of the heavens, and its reliability is such that astronomers meet and gravely discuss the reasons for differences of so small an amount as $1 / 1000$ th of a second in a lunation.

The nature of the oscillations of the moon is known many years in advance, and will be laid before the reader, and he will be able to make intelligent predictions as to times of lunations himself. Nor will this knowledge, when understood, lessen confidence in the second hand of God's timepiece, but rather increase it. A man may run up and down the length of a swiftly moving train and thus move slower or faster through the surrounding country, yet, after all, the net result is not changed if he quietly stays in his seat. That is the way it is respecting the oscillations of the moon.
In his work The Calendar; Its History, Structure and Improvement (published by the Macmillan Company) Prof. Alexander Philip, LL.B., F.R.S., of Edinburgh, says the exact length of the year is 365 days 5 hours 48 minutes 46.15 seconds. He made a careful study and had access to many works; in this production it is assumed that his statements are correct.

Indebtedness is acknowledged to 220 works on astronomy; also to Dr. Clyde Fisher, Ph. D., LL.D., curator of the Department of Astronomy, The American Museum of Natural History, 77 th street and Central Park West, New York city. Dr. Fisher is rated the ablest astronomer in New York.

An Intricate, Confusing Subject

Gentile scholars of eminence sadly say that years are "incommensurable"; an incorrect but excusable statement, in view of the difficulties involved. There is only one way out: God's way; which way is simplicity itself, as will appear in due course.

That the Jews are confused is self-evident. Here is what the International dictionary says of their efforts: "The common year is said to be defective, regular or perfect (or abundant) according as it has 353,354 or 355 days. The leap year has an intercalary month, and a total of 383 (defective), 384 (regular), or 385 (perfect, or abundant) days. The calendar is complicated by various rules providing for the harmonious arrangement of festivals, ete., so that no simple perpetual calendar can be constructed." In their calendar the Jews show only 3,761 years in the era B.C., whereas the Scriptures, preserved in their midst, show that somewhere, somehow, they have lost account of at the very least 267 years. Jehovah's people have nothing: to learn from the Jews on this subjoct; the Jews have lost the "key of knowledge".—Luke 11:52,

Jehovah's people are not interested in the old Roman calendar of ten months in a year, even though "Christendom" still uses the original names of the last four months of that year: September, October, November, December.

They are not interested in the old Greek calendar, the use of which caused such confusion in the Roman empire that in the year 46 B.C. it was necessary to add two months to the year, making it fourteen months long, in order to bring the seasons back to their proper position.

They are not interested in the Julian calendar, which followed, unless they chance to live in Greece, or unless they are astronomers. The first of the year, with the Greeks, is thirteen days behind the one now in general use. The reason why the astronomers cling to the Julian reckoning is that it has been in use constantiy, in some sections of the world, 1,980 years. They merely use it as a convenient measuring rod, to connect up with the past. Julian days, used
by all astronomers, begin to count 250,310 days prior to the day of Adam's creation, and are to that extent in error. In this article the Edenic day, i.e., the day from Adam's creation, is substituted for the Julian day; and it is hoped that all astronomers, in the interest of pure truth, will adopt and accept and use the Edenic day exclusively.

Jehovah's people disdain to consider for a moment the Mohammedan calendar, which takes its start in July of the year 622 (A.D.), and which even the Mohammedans no longer take seriously.
Napoleon put an end to the French Revolution calendar, which began in November, 1793, and perished in 1805. Everything was supposed to be done by the decimal system. There were 12 months of 30 days each, and five or six fete days at the end of the year, to balance things up.

The Gregorian Calendar

But though Jehoval's people ignore all of the foregoing, they cannot quite, in the immediate present, ignore the Gregorian or papal calendar inaugurated in October, 1582, at which time ten days were dropped from the Julian calendar, the firteenth of that month hooking up next to the fourth. It was not until 1752 that England adopted the Gregorian calendar.

In this series of articles it will be shown that all the foregoing calendars are calendars of the Deril. If that is shown to be true regarding the Gregorian, it will certainly be true of all the others. Please, now, take the time to examine some of the necessary details of this intricate subject.

Jehorah God is nowhere mentioned in the Gregorian calendar. It would suit Satan well to have Him lost sight of altogether. Christ is mentioned, but the year 1935 is not the year of our Lord at all, for He was born in 2 B.C. and died in A.D. 33.

In these articles the Gregorian calendar is supplanted and discarded by the unique expedient of extending it into the past, as if it had always been in operation, using it to establish historical points in terms that will be understood by those nov living, and then letting it die an ignominious death.

The present pope is not sure, even, as to in what year Christ died. One of his alleged reasons for extending the "Holy Year" to 1934 was that, so he said, he was not sure whether Christ
died in A.D. 33 or in A.D. 34. Of course, the real reason why he was making both ends of the year "holy" was that thus he could get collections at both ends.

The Gregorian calendar was the work of a council of theologians, professedly the successors of the apostles, but eager to hide the apostles from sight except as they might wish to shine in their reflected glory. One can see this in what the council did, and in what they failed to do.

Gregorian Calender and Apostles

Let it be supposed that the Gregorian council had really desired to honor the apostles whose successors they claim to be. What a fine chance they had! For instance, they could have changed January to James, in honor of the man to whom the Scriptures refer as the Lord's brother. But they preferred to have millions of people everlastingly writing down a name in honor of Janus, the original Roman "father". Janus was two-faced. His successors have been like their "father". He was worshiped as the god of gods, supreme janitor of heaven and earth. The word "janitor" takes its derivation from the word "Janus". A writer who made a study of this subject says: "But here is the important fact that, till the pope was invested with the title, which for a thousand years had had attached to it the power of the keys of Janus and Cybele, no such claims to pre-eminence, or anything approaching to it, was ever publicly made on his part, on the ground of his being the possessor of the keys bestowed on Peter." In other words, he was Jupiter, the Devil, and naturally those who claim to rule heaven, earth and hell, and who love the name "father", did not wish to part with anything that so well upheld their claims.

The theologians had a second opportunity with regard to the second month. On or about what is now February 15 the ancient pagan Romans had heathen priests, called the priests of Faunus, who clad themselves in goatskins, and made a circuit of the Palatine Hill, striking with goatskin thongs all women encountered. The ostensible object was to insure fertility and easy delivery; the real object was to enable the grafting priests to keep their hold on the superstitious people. This ceremony was supposed to "februare", or purify, the women. One can readily understand why the Roman Catholic
theologians wanted to retain this connection with heathenism.

In connection with the "februation" of the women the priests held a festival, the Lupercalia, in honor of Lupercus, the god of fertility. There is a brief account of a similar "festival" in Numbers 25:1, 2: "And Israel abode in Shittim, and the people began to commit whoredom with the daughters of Moab. And they called the people unto the sacrifices of their gods: and the people did eat, and bowed down to their gods."

These alleged successors of the apostles who made the Gregorian calendar could have named the second month Boanerges, in memory of James the brother of John, the one who had the honor of being the first martyr among the Lord's chosen twelve, but they preferred the old pagan name.

The Old Roman Year

The old Roman year began with March, and its first month in the year was named Martius, after Mars, the god of war. The war priests of ancient Rome were the Salii, or leapers. Their job (contrasted with their present successors) was not so much the encouragement of the production of more Roman soldiers, but to see to it that Mars was well bribed by their leapings and other gymnastics. Their chief ceremony was on March 19.
The Gregorian ecclesiastics had another good opportunity here. They might have named this month after Peter, for whom they profess to have so much attachment. But as between following the advice of Peter to "seek peace, and ensue it" (1 Peter 3:11) his alleged successors have done all possible to keep the world in wars and turmoils throughout their entire history, and tomorrow, if another world war were to start, the Roman Catholic theologians would be the very first to climb on the band wagon, for their full share of chaplaincies or whatever other graitt was to be had, in every country involved. And the Protestant clergy would be scarcely one whit behind. And so one can see why the Gregorians desired to retain the martial spirit, martial law and martial music of Mars rather than to have a month named after the humble fisherman who, in his writings, counseled peace at least five times.

The second month of the old Roman year of ten months was Aprilis, from a word meaning
'to open', and probably signifying that this was the month in which the buds open. There is no objection to this, surely, but, as this was the month in which the Savior died, what a chance there was here to commemorate that event upon which all human life depends. The month could have been called Christ, and it would have been an annual reminder of man's debs that can never be repaid.

But the theologians preferred the old name, with which, no doubt, some god or goddess was in some way involved. Incidentally, as will later be shown in this series of articles, there is ground for the tradition that Christ was nailed to the tree on April 1, and that the so-called "April fool" pranks on that day are intended by the Devil to bring ridicule on the One who counted not His life dear unto Himself, but gave it all up in the doing of Jehovan's will and in the vindication of His name. May God help all of Jehovah's people to be like their Master, and "fools" for His sake.-1 Corinthians 4:10.

The Month of Hatus

The month of Maius in the old Roman calendar, the present May, refers to Master Jupiter, the great father god, who had more wives than Henry VIII. It would have been a rather nice thing for the theologians who pretended to think so much of the apostles if they had called this month Matthew. But it was Matthew, in the 23 d chapter, that specially drew attention to the Lord's warning: "Call no man your father upon the earth: for one is your Father, which is in heaven. Neither be ye called [Master]: for one is your Master, even Christ." (Verses 9 and 10) And the theologians knew better than to draw the attention of the people to the word of God which exposes their paternalistic method of gaining control of the men through control of the women.

Juno, so the encyclopedia discloses, was "the most exalted divinity of the Latin races in Italy next to Jupiter, of whom she was the sister and wife. She was the queen of heaven and under the name of Regina (queen) was worshiped in Italy at an early period". It would have been nice for the Gregorian theologians to name the sixth month after John, the one whom the Lord especially loved, but that would have been a hard blow at mariolatry; and so the Gregorian ecclesiastics, who are so strong for the pagan queen-of-heaven idea, preferred to let the name June stand as it is.

In the old Roman calendar the fifth month was named Quintilis, which merely meant that it was the firth month of their year. When Julias Caesar reconstructed the calendar, making the year one of twelve months ingtead of ten, one of the new months was named after himself, and Quintilis became July. Here again the theologians had a fine opportunity to choose between a great warior and the humble and faithful Jude, whose short epistle contains so much; and so, because they more admired military conquerors than a humble messenger of peace, they chose to retain the name of the warrior, born in that month.

The Morth of August

It was Mark Antony, the politician, that fixed it up to have the seventh month of the year named after Julius Caesar, but Julius' successor Augustus was less modest. He changed the name Sextilis, sixth month, to August, and the Roman senate, to gratify his vanity, took one day away from February and added it to the month thus named. That is why February is so short.

Theologians love everything that exalts men; and so when the question came up, if it ever did come up, of naming the eighth month after the apostle Andrew, the suggestion was voted down 100 percent in favor of retaining the name of the publicity-seeker who started world-wide taxation.

September, seventh old Roman montl, could have nicely been named after Philip, but it was not. October, eighth old Roman month, could have been named after Thomas, but it was not. November could have been named after Nathanael (Bartholomew), but it was not; and December could have been named after Simon (Zelotes), but it was not. The theologians did not want any of the months named after the real apostles. They preferred that the old paganisms which constitute their sole stock in trade should be perpetuated, as long as possible. Certainly, on no account do they wish the people to have the Scriptures, or even to be reminded of them, except in so far as they can twist these to seem to sustain their pretensions.

The Days and the Hours

The Devil, of course, was the one who induced the ancestors of the present generation to name all the days of the week after leathen gods and goddesses. Neither God nor Christ, nor any
prophet or apostle, is represented in the days of the week as now in common use. Sunday is named after the sun god; Monday, after the moon god; Tuesday, after Zeus, or Tyr; Wednesday, after the god Woden; Thursday, after Thor, the god of thunder ; Friday, after Frigg, or Friga, Woden's wife; and Saturday, after Saturn. The theologians could have changed all this if they had wished to do so, but they did not.

God made the day to begin at sundown, and so the Devil has changed that in almost every place, but not quite. In most countries the beautiful robe of starlit night is rent in twain and the day begins at midnight, which practice was handed down from the Egyptians and Romans. The Babylonians began the day at sunrise. Astronomers make it begin at noon, and number the hours from 1 to 24 consecutively. This system is followed in some parts of Italy. In all of these matters the theologians have gone along with every scheme to dishonor the Maker of the stars and to stray farther and farther from the Word of God. They have seemed to instinctively realize that their protection consists in keeping as close as possible to the Devil and the Devil's way of doing things.

Latest Ecclesiastical Muddling

Under the leadership of Doctor Cadman, expresident of the Federal Council of [Protestant] Churches in America, a still further mix-up in respect to calendars is in sight. Following a big get-together council of all the most pompous Protestant theologians, at Fanoe, Denmark, in 1934, the proposition was launched to make every year one of 364 days, adding the 365th day as an "extra" Saturday, coming always between December 30 and January 1; then when the year would have 366 days the "extra" day would be inserted as an "extra" Saturday between June and July. By this plan, in which the Scriptural arrangement of the days into weeks would be entirely ignored, there would be four quarters of the year identical in length, each containing three months of 31,30 and 30 days, and, if one is foolish enough to believe it, "any given date will fall on the same day of the week."

It is thus seen that the Devil and the children of the Devil are greatly interested in having everything different from the way God arranged it, not only as respects the years and the months, but as respects the weeks, the days, and even the hours, and the reason for it is clear. The

Devil is determined to leave no stone unturned to dishonor God, and he also well knows that as one error leads to another so one truth also leads to another, and is in terror lest great truths long covered should be brought to light.

And so, with this preliminary examination, please turn to make a study of the various items that enter into the making of calendars, a Scriptural as well as a scientific study, to which is invited the closest scrutiny of astronomers, mathematicians and others, as well as Jehovah's people. Should any errors be discovered in statements of fact or in calculations, be so good as to transmit them to The Golden Age as promptly as possible. In this material, high-school and college teachers have abundant opportunities to put the skill of their pupils to the test and at the same time exalt the name of Jehovah, the true and living God.
The methods that will be pursued will be entirely different from any ever before used. The place to begin is with the year.

A Consideration of the Year

According to Genesis 1: 14 God made both the sun and the moon to be "for signs, and for seasons, and for days, and years". The thought that the signs here mentioned have anything to do with the signs of the zodiac is all nonsense, demonism. The word "signs" signifies "ensigns", as if here is some standard that needs the attention which will now be given to it.
The seasons recognized in the Scriptures are but two, the summer and the winter, which seasons will continue forever. "While the earth remaineth, seedtime and harvest, and cold and heat, and summer and winter, and day and night, shall not cease."-Genesis 8:22.
Jehovah's people are familiar with the instructions to Israel to "keep the passover at his appointed season" (Numbers 9:2), and know why Jehovah spoke of it as "the season that thou camest forth out of Egypt". (Deuteronomy 16:6) They know that the Lord, in the parable of the vineyard, spoke of "fruits in their seasons" (Matthew 21:41), that the apostle also mentioned "fruitful seasons" (Acts 14:17) ; the prophecy of Zechariah ($14: 8$) speaks of summer and winter as ever continuing; and there are other references to the seasons in the Scriptures, and yet the clergy have never recognized in any way these grand divisions of time in any of their calendars. One would have thought
that they would at least have named one month after the opening of the vernal season or one after the opening of the autumnal season, but the clergy have no zeal for the honoring of anything with which Jehovah God has had anything to do. They are interested only in the things that bring dishonor to Him and do bring honor to men and to their master, the Devil, whose they are and whom they serve. On the other hand it seems that the attention of the true people of God has been directed to the vernal equinox for centuries, and there must be some reason for it. To this day, Jehovah's people, striving for truth and obedience, seek the beginning of Nisan (the name is of heathen origin), the month in which Jesus died, and locate it with the new moon nearest to the said equinox.

When Do the Seasons Begin?

For various reasons it is desirable that the new year should have a fixed point at which to begin, and to end; and what better point than that made by Jehovah himself in the heavens, when the days and nights are of equal length at every point on the globe? It is the time of life, a time when all should specially turn their minds and hearts to the great Creator who provided such a convenient day for the settlement of accounts that are in the past and for the opening of new vistas for the future. "Thout crownest the year with thy goodness."-Psalm 65:11.

Years ago many of those who are now Jehovah's witnesses had the belief that the true time of the year's beginning is in the fall, yet, whatever may have been the reason, in the tro texts where the two seasons are mentioned together the summer is mentioned first.-See Genesis 8:22; Zechariah 14:8.

All intelligent persons know that on the equator the days and nights are always of equal length. They also know that twice a year the sun apparently shifts its position with respect to the earth, and in March and September there are what are called equinoxes; that is, the days and nights are of equal length in every place on the earth. The human family was first implanted in the Northern Hemisphere; there the Scriptures were written; there the Lord died. Hence the Scriptures tacitly recognize the fact.

Additionally, the Northern Hemisphere contains most of the land surface.

The summer season (which men, but not the

Scriptures, divide into two parts, one of which is named "spring") begins in March (in the Northern Hemisphere) and contains the growing and harvesting seasons of that part of the world, wherein most of the land surface of the earth is found. The cold seasons are inaugurated by the autumnal equinoxes.

The Gregorian calendar does not begin at either equinox, and does not even begin any month with either of them, but it cannot quite ignore these important fixed points in terrestrial history, and so one generally finds in an almanac a brief mention of the time when the equinox (usually the vernal) occurs. It is manifest that, in the mind of God, the true year would have its beginning at one of these points. Would it not seem reasonable, since God made the sun to rule the day and the moon to rule the night, that He would have the greater of these two luminaries fix the length of the year and the lesser fix the length of the month?

Jehovah puts the mind at rest on this subject of His time for beginning the year. As the Israelites were about to leave Egypt (which, as will be shown subsequently, was about the time of the vernal equinox) He said to Moses: "This month shall be unto you the beginning of months: it shall be the first month of the year to you."Exodus 12:2.

Much has been said of the observance of som called Jewish "New Year" at the autumnal equinor, but the Devil has been after the Jews as well as after the Christians. Can anybody show. where the Jews or anybody else was ever commanded or authorized to begin a new year at any other time than that fixed by Jehovah God? He cannot. It is quite true that Exodus 34:22 speaks of "the feast of ingathering at the year's end" (revolution of the year, margin); but the reference is manifestly to the crop year, which does indeed end in the fall, as is well known to everybody. Exodus 12:2 is the law on this subject.

The foregoing text, therefore, ought to be sufficient proof that the true time of the beginning of the year is with the vernal equinox; but there is more. Nine months from the autumnal equinox would be on or about June 23 , at which time in Palestine it is exceedingly, warm. Nine months from the vernal equinox is about December 22. Here read Jeremiah 36: 22: "Now the king sat in the winter house, in the ninth month: and there was a fire on the hearth
burning before him." What time that year started ought to be plain to all.

On Solomon's Porch-in Winter

When Jesus was here on earth His every word and act was designed to be an honor to His Father's name. He was able to say, "I do always those things that please him." (John 8:29) The Father himself said: "Thou art my beloved Son; in thee I am well pleased."-Luke 3:22.

As a result of this close relationship, one may study with minute care every detail of what Jesus said and did and always find in it something that the Father is telling His people by that means. There is this item: "And it was at Jerusalem the feast of the dedication, and it was winter. And Jesus walked in the temple in Solomon's porch."-John 10:22, 23.

Theologians have endeavored to explain this text, aiming to show that Jesus was trying in some way to participate in a feast of dedication not mentioned in the Scriptures, and in so doing they have missed the point.

In this passage the heavenly Father seems to be gently hinting to the reader that there is a point in connection with Solomon's temple that needs to be considered; it is the time of its dedication. And if one looks the matter up he finds that it was dedicated "in the month Ethanim" (the name itself is of heathen origin), "which is the seventh month" (1 Kings8:2), and the "feast of dedication", identified with the seven-day dedication of the altar, was on the 8 th to the 14th of that month. (2 Chronicles $7: 9,10$) The seventh montle was the first monthr of the winter season. Additionally, it is well known that the day of atonement and the feast of tabernacles, which occurred in the seventh month, were observed when the Israelites had gathered in the fruits of the land and were entering the winter season. (Leviticus 23:27,39) It is thas established by the mouth of four witnesses that the true beginning of the year is at the yermal equinox.

The Length of the Year

The length of the year, from vernal equinox to vernal equinox, is not an exact number of days.

Beginning with the vernal equinox of the year 1886 (A.D.), the times between the vernal equinoxes for the next succeeding fifty years, down to 1936 inclusive, are, in their order, 365 days 5 hours and the number of minutes which fol-
low : 46, 45, 48, 54, 44, 05, 46, 48, 60, 27, 45, 48, $50,13,57,81,41,52,66,60,00,60,60,60,60,21$, $49,53,40,56,51,48,61,40,52,58,40,51,53,49$, $57,46,50,55,37,47,49,45,54,40$. This information was gleaned from reference works in the New York Public Library. The general average for this particular period is 365 days 5 hours 46 minutes 45.6 seconds.

The length of the year is influenced by conditions in the earth itself, near the equator, by the approach and recession of other planets, and by the precession of the equinoxes. In the accompanying diagram (page 363), in the righthand lower corner is shown in graphic form how the influences that make one year shorter than another are overcome in succeeding years. The small differences are not cumulative; the total divergences of less than an hour from the mean would not be greater six thousand years ago, which means that one can tell accurately the time of the vernal equinox in any year from creation to date. Moreover, its day in the week can be ascertained, which is something quite new in the field of human interest, a path never before trodden.

Extending the Gregorian Calendar

Taking note of the fact that there are 60 sec onds in a minute, 60 minutes in an hour, and 24 hours in a day, it follows that in one of God's years, a so-called solar year, or tropical year, or synodical year, that is, from one vernal equinox to another, there are $31,556,926.15$ seconds; in a calendar year of 365 days the number of seconds is $31,536,000$; so God's year is longer than man's year by $20,926.15$ seconds.
In the Gregorian calendar arrangement man puts in an extra day once in four years; so in that time he has 1,461 days. In four of God's years there are $126,227,704.6$ seconds. In 1,461 caleudar days there are $126,230,400$ seconds; so at the end of the four years man has borrowed $2,695.4$ seconds from the future, to make up for his extra inserted day.

After twenty-four leap-year periods of four years each, man has borrowed nearly a day. Accordingly, when the end of the century is reached, the leap year is usually omitted. The normal century of man, therefore, has in it 24 leap years and 76 years that are not leap years. The total of days in such century is 36,524 days, amounting to $3,155,673,600$ seconds. In one hundred of God's years He has $3,155,692,615$
seconds. At the end of a normal century, man has not used in his calendar all the time that has been made for his use, by 19,015 seconds.

After four centuries, or rather, every fourth century, man finds it necessary to put in an extra leap year. These years, called quadricentesimal years, go in at the end of such centuries as are divisible by 400 . The next one would be in the year A.D. 2000, but it will not be needed. The Lord has a much better way.

In four of man's centuries he has 146,097 days: 97 leap days and 146,000 ordinary days. In seconds this amounts to $12,622,780,800$. In 400 of God's years there are $12,622,770,460$ seconds; so at the end of each quadricentesimal period of 400 years the man has again borrowed from the future a total of 10,340 seconds.

Another shift is necessary after eight quadricentesimal periods. In that time man will have borrowed for his calendar 82,720 seconds that did not belong to him. This is almost a day (there are 86,400 seconds in a day); accordingly at this point no quadricentesimal leap day occurs. The net difference, then, in 3,209 year's amounts to 3,680 seconds, or 1 hour 1 minute 20 seconds. A further correction would be necessary after 23 such 3,200-year periods; and so on indefinitely.

Projecting the Calendar Backward

If the Gregorian calendar can be projected forward it can also be projected backward; and this has been done in the accompanying illustration. The outline at the top (page 363) shows in a general way the time of vernal equinox of every year from creation to date. Each century is in a little diamond-shaped section by itself, except where the quadricentesimal leap dars occur, when two sections are merged in one. The latest date in each century when the equinox could occur is named, and the earliest one. A little careful study of the enlarged diagrams beneath the outline will show how to make use of the outline. The quadricentesimal leap years are fourteen in number; that is, 4000, 3600, $3200,2800,2400,2000,1600,800,400$, and 1,B.C., and A.D. $400,800,1200$ and 1600 . The year 1200 B.C. is not a leap year, for the reason that it is one of the correction places in the whole general scheme, as has already been fully explained.

In using the Gregorian calendar between centuries removed from each other, it is neces-
sary when finding how far apart ally two equinoxes are, if one is in a century B.C. and one is in an A.D. century, to make the total one year less than that indicated by adding the years together. In computing time from a B.C. date to an A.D. date the portion of the year that has elapsed must be taken into consideration. That the exact number of years is not to be had by simply adding B.C. and A.D. dates together, as some long supposed, can be immediately demonstrated. In the spring of 1 B.C. Christ was $1 / 2$ year of age; He died 33 full years thereafter, but not in the spring of A.D. 32, as would be the case if it were correct to add B.C. and A.D. dates together: the 33 years were not up till the spring of A.D. 33. If B.C. and A.D. dates are added together, the total number of years is one less than the sum thus obtained.

The year 4 B.C. is a leap year, though only three years away from the leap year of 1 B.C. (a quadricentesimal year). This feature is shown in one of the diagrams (C) below the outline.

Calculating the Equinoxes: Problem 1

Reference to the outline at the top of page 363 shows that in the year 1935 A.D. the equinox is on the afternoon of Thursday, March 21.* To be exact, it is at 52 seconds after $3: 42$ p.m., Jerusalem time, which is the proper time basis to use in all human affairs, for reasons to be explained later. The time of equinox at the 75 th meridian west, commonly called Eastern Standard Time, is 8:18 a.m., March 21. This is 7 hours 24 minutes 52 seconds later than Jerusalem time (used hencefortll in calculating the equinoxes). Enlarged section of the last years of the nineteenth century and the remaining years to date shows more fully the times of equinoxes at Jerusalem in the past century. See the diagram on opposite page for particulars.
Jehovah's people have heretofore thought they had good evidence to believe that Adam was created in 4128 (or fall of 4129) B.C., and Problem 1 is to ascertain the time of vernal equinox for the year 4128 B.C. Reference to the small outline at top shows it was in the morning of March 21, 4128 B.C.; the enlarged section (A) of the first period after creation shows it was very close to 10:00 a.m. Exactly what time was it?

[^0]

From 4128 B.C. to A.D. 1935 is not 6,063 $(4128+1935)$ years, but $6,062(4128+1935-1)$ years. The number of seconds in 6,062 solar years, God's years, is $191,298,086,321.3$; in $2,214,098$ days, the total number of seconds is 1.91,298,$067,200.0$. The difference is $19,121.3$ seconds, which is 5 hours 18 minutes 41.3 seconds; to be figured back from (before) 3 hours 42 minutes 52 seconds ($3: 42: 52$) p.m., the hour of equinox on March 21, A.D. 1935. The answer is that the equinox on March 21, 4128 B.C., was at 10.7 seconds after 10:24 a.m. Now, what day of the week was it?

The 2,214, 098 days from March 21, 4128 B.C., to March 21, A.D. 1935, are found as follows:
(a) Each of the 6,062 years
had at least 365 days $\ldots 6062 \times 365=2,212,630$
(b) The 60 centuries had at
least 24 leap days each . . . $60 \times 24=1,440$
(c) 14 quadricentesimal years
had each a leap day $14 \times 1=14$
(d) 8 leap days in the 20 th
century $8 \times 1=$
(e) 6 leap days in the period
before 4100 B.C. $6 \times 1=6$
Total number of days $\overline{2,214,098}$
Leap day for the year 4128 B.C. would not be counted, as the vernal equinox is not as far back in the year as the point at which the leap day occurs.

Another method of arriving at the same result is to take the number of leap years (1468) and multiply by 366 ; and then, deducting the number of leap years from the total of 6062 ($6062-1468-4594$), multiply the result by 365 , as follows:

$$
\begin{array}{lrr}
1,468 \text { leap years; } & 1468 \times 366= & 537,288 \\
4,594 & \text { common years; } & 4594 \times 365= \\
\text { Total number of days } & \underline{1,676,810} \\
\hline 2,214,098
\end{array}
$$

In 2,214,098 days there are 316,299 weeks and 5 days. In the year 1935 the 21 st of March falls on Thursday. In 4128 B.C. the 21st of March fell five days earlier in the week, which day is Saturday. Therefore, the vernal equinox of 4128 B.C. fell on Saturday, at 10:24:10.7 a.m.

The Result of Some Calculations

Using exactly the same method as above, but without going over all the operations, the next step in order is to give a considerable list of vernal equinox dates, in the past and the present. After A.D. 1886 there is given a plus or minus number of minutes by which the actual
time of equinox varied from the mean which the astronomers have provided.
Prob
No.
1 B.C. 4128 Sat. $10: 24$ a.m, and 10.7 sec., Mar. 21
" 4028 Thu. $3: 41 \mathrm{p} . \mathrm{m}$." 5.7 " " 21
" 2472 Fri. $12: 25$ p.m. " 55.1 " 621
" 2372 Wed. 5:41 p.m." 50.1 " " 20
" 2045 ". 10:30 p.m. " 21.15 " " 21
" 1945 Tue. $3: 48 \mathrm{a} . \mathrm{m} . "$ " 56.15 " " 21
" 1920 Fli. 5:08 a.m. " 9.9 " " 20
" 1015 Sat. $2: 01$ a.m. " 5.65 " " 21
" 1575 " $6: 31$ p.m." 51.65 " " 20
" 1515 Thut. 7:08 a.m." . 65 " " 21
" 1475 " $11: 58 \mathrm{p} . \mathrm{m} . " 46.55$ " " 21
" 1469 Fri. $3: 39$ p.m. " 51.12 " " 21
" 1035 " $1: 27$ p.m. " 12.65 " " 21
" 1028 Sun. 6:08 a.m." 35.7 " " 21
" 598 Tue. 12:31 p.in. " 40.3 " " 22
" 745 Mon. $7: 10$ p.m. " 16.15 " " 21
" 641 Thu. $11: 42$ p.m. " 15.55 " " 21
" 607 Fri. 5:20 a.m. " 24.85 " " 21
" 537 Mon. $4: 14$ a.m. " 15.35 " \quad " 22

" 3 Sat. 12:16 p.m. " 50.45 " " 21
A.D. 12 Tue. $9: 39$ p.m. " 45.55 " " 20
" 83 Sun. 11:53 p.m. " 54.7 " " 21
$\begin{array}{lllllll}\text { " } & 1879 \text { Fri. } & 2: 11 \text { a.m. " } & 47.6 & " & " & 21 \\ " & 1884 & \text { Thut. } & 7: 15 \text { a.m. " } & 38.35 & \text { " } & " \\ 20\end{array}$
" 1914 Sat. 1:38 p.m." 42.85 " " 21
(minus 14 min.)
28 " 1918 Thu. $12: 53$ p.m. " 47.45 ses., Mar. 21
(minus 14 min .)
52.05 sec., Mar. 21
(plus 2 min .)
" 1926 Sun. 11:23 a.m. " 56.65 sec., Mar. 21
(minus 1 min .)
47.4 sec. Mar. 21
33.55 sec., Mar. 20
(plus 1 min.)
Notes on the Above Problems:
Problems Nos. 2, 3, 6, 8, 12, 13, 14, 16, 18, 22, present the same features as Problem No. 1, and are solved by taking similar steps.

Problems 25, 27, 28, 29, 30, are similar to Problem 1, but, being wholly within the A.D. period, the years that intervene are ascertained by subtracting the year in question from the year 1935. All other stops are the same as for No. 1.

Problems 5, 16, 17, 20, 21, 31, are similar to Problem 1, but fractions are large and must be watched; in each of these instances there are sufficient hours in the fractional days to make them count as complete days.

Problems 4, 7, 9, 10, 11, 23, 24, 26, 32, show the vernal equinox for the desired year falls on March 20. By this trick of the calendar one full day is lost, and must be accounted for in the answer. This is clearly seen in Problem 26. The 18,627 days involved are 2,661 weeks (fractions in the problem being too small to affect the answer). March 20, 1935 A.D., is on Wednesday. One might infer from this that the equinoctial date of March 20 in the year 1884 A.D. (which is an even number of weeks away from the equinoctial date of 1955 A.D.) would also be on a Wednesday, but it is on a Thursday (the same as in 1935). (See diagram [B] page 363.)

Problems 15, 19, show the vernal equinox for the desired year falls on March 22, instead of the 21st. By this trick of the calendar one full day is borrowed, and must be accounted for in the answer. These two problems, like those in the paragraph last above, require close reasoning.
To aid students of these problems there is published, on pages 368, 369, a calendar from creation to date, occupring trro full pages of The Golden Age, and greatly simplifying the arriving at correct dates in the remote past, both as to the days of the month and as to the days of the week.

Date of Autumnal Equinox 4129 B.C.

Inasmuch as some have held that Adam was created in the fall of $4129 \mathrm{B.C}$. , at a date convenient to the autumnal equinox, the date of that equinox is fixed by the following accurate and convenient method:
Autumnal equinox, 1934 A.D.. Jernsalem time, was September 23, 8:11 p.m. Ternal equinox, 1935 A.D., is, Jerusalem time, March 21, 3:43 p.m. Therefore the length of time from the autumnal equinox of 1934 to the vernal equinox of 1935 is 178 days 19 hours 32 minutes. The year 4128 B.C. was a leap rear; therefore 178 days 19 hours 32 minutes back from the time of the vernal equinox of 4128 B.C. brings us to September 24, 4129 B.C., at 10.7 seconds after $2: 52$ p.m. as the time of the atumnal equinox of that year.
Following are the vernal and autumnal equinoxes, Jerusalem time, for the years stated:

Vernal Autumnal 1923, March 21, $5: 54$ p.m. September 24, $4: 29$ a.m. 1924, " $20,11: 45$ " "، $23,10: 24$ " 1925, " 21, 5:38 a.m. " $23,4: 09$ p.m. 1926, " ${ }^{\prime}$ 21, 11:27" " " $23,9: 52$ " 1927, " $21,5: 24 \mathrm{p} . \mathrm{m}$. "6 $24,3: 42$ a.m.

1928, March 20, 11: 10 p.m. September 23, $\quad 9 ; 31$ a.m. 1929, " 21, 5:00 a.m, " 23, 3:18 p.m. 1930, " 21, 10:55" "6 23, 9:02"
1931, " $21,4: 32$ p.m. 6 $24,2: 49$ a.m.
1932, " $20,10: 19$ " " $23,8: 41$ "
1933, " $21,4: 08 \mathrm{a.m}$. *i $23,2: 26 \mathrm{p} . \mathrm{m}$ 。
1934, " 21, 9:53" " ${ }^{63}$, 8:11"
Average date, vernal: March 21, 7:41:32 a.m.
Average date, autumnal: Septeinber 23, 6:18:50 p.m.
Average time, vernal equinox forward to autumnal equinox,

186 d. 10 h .36 m .18 sec.
Average time, autumnal equinox forward to vernal equinox, including the three leap days, in the 12 years, $\quad 178$ d. 19 h .23 m .42 sec.
As some will be interested at this point to consider them, two small items are now slightly anticipated in the following summary:

New moon rose Sunday, September 22, 4129 B.C., at 8:23:27.504592 a.m.

Autumnal equinox was $541 / 2$ hours later, Tuesday, September 24, 4129 B.C., at $2: 52$ p.m.

New moon rose Tuesday, March 17, 4128 B.C., at 12: 47 : 44.694448 p.m.

Vernal equinox was 94 hours later, Saturday, March 21, 4128 B.C., at 10:24: 10.7 a.m.

Do any of Jehovali's witnesses, or any of the Jonadabs (comrades of Jehovah's witnesses; see Vindication, Book Three), see anything in the placement of these moons with respect to the equinoxes, or anything in the days of the week on which they occurred, to specially indicate the hand of God, as one might reasonably expect it to be manifested at such an interesting time in earth's affairs? No such pleasing evia dence appears. More on this point later, in its proper place, when careful consideration will be given to the details of the calendar of Jehovah God; which calendar, it is hoped and believed, will permanently replace, as far as calendars are concerned, the efforts of Satan to hide some of God's beautiful truth, now, since 1918, coming out from His temple in such a refreshing strean.

God's Love of the Beoutiful

In the summertime, in Pike county, Pemnsylvania, in a region where one may see a score or more of wild deer in a single day, deep down in the heart of the forest, a mile or more from the highway, lives all alone a little old lady who loves the truth. She got it by listening to Watchtower programs over the radio station WBBR, of New York city.

When this little old lady was found she went into ecstasies over the messages she had heard. Explaining her environment, and that she could live with her children in New York city and in Philadelphia, if she chose, she said, "I prefer to live here, like a gypsy, in the midst of God's bouquets." The frost had just touched the leaves of the forest, tinting them with colors that beggar description.

How much more God loves beauty! And how much the most beautiful things of His creation are all a little differeut from one another! When men try to make things beautiful they try to make them all alike.

No two flowers in a flower garden were ever exacily alike; no two roses on a rose bush, no two petals on a rose. A million new-born infants can be fingerprinted, or a billion of them, or ten billion, for that matter, and no two sets of fingerprints will be the same. And thus one comes to a consideration of God's beautiful months, His lovely, exquisite months, that the more they are studied, the more they are to be admired, because, while all substantially alike, they are all slightly different.

A Study of God's Months

The word "month" comes from the word "moon"; God's months were all arranged for before man appeared on the earth. It is man's proper place to inquire hambly at God's feet respecting the work of His hands; it is not mans right to discard things which God has made for His government, nor to substitute others in their place.
"And God said, Let there be lights in the firmament of the heaven, to divide the day from the night; and let them be for signs, and for seasons, and for days, and years: and let them be for lights in the firmament of the heaven, to give light upon the earth: and it was so. And God made two great lights; the greater light to rule the day, and the lesser light to rule the night: he made the stars also. And God set them in the firmament of the heaven, to give light upon the earth, and to rule over the day and over the night, and to divide the light from the darkness: and God saw that it was good." (Genesis 1:14-18) Herein is the first reference to the moon in the Scriptures.
Even though the moon had not been mentioned at all in God's Word, man would be compelled to take note of it; it is too conspicuous in
the heavens to be ignored; and too beautiful; and too useful.
Satan has endeavored to get men to hold God's month and its instrument the moon in little esteem; hence the terms "lunacy", "lunatic," "moon-struck," and terms of similar import. The apostle does indeed say, "Let no man therefore judge you in meat, or in drink, or in respect of an holy day, or of [feasts celebrating] the new moon, or of the sabbath days; which are a shadow of things to come; but the body is of Christ." (Colossians 2:16,17) But this is far from urging men to set aside the plain statement of God's Word that God "appointed the moon for seasons" (Psalm 104:19), monthly seasons being manifestly what is here meant.

"A Fainhful Witness in Hecuen"

It is true that the prophet Isaiah brings the message to an idolatrous and rebellious people, "Tour new moons and your appointed feasts my soul hateth" (Isaiah 1:14), but that does not change the fact that the prophet Ezekiel writes of the fature offerings of "the prince" which are to take place "in the new moons". See Vindication, Book Three, pages 287, 293, 295, for comments and explanations on references to the new moons in Ezekiel $45: 17$; 46:1,3,6. These may not be ignored or set aside.

Though Isaich mentions in the first chapter God's disgust with Israel's hypocritical observances of the new moons, he says in the next to the last verse of his prophecy: "And it shall come to pass, that from one new moon to another, and from one sabbath to another, shall all flesh come to worship before me, saith [Jehovah]." (Isaiah 66:23) Of course, that is after the oncoming battle of Armageddon has done its work of destroying Satan's organization, and the earth has been cleansed of all its deflements.

When the psalmist said, "When I consider ... the moon" (Psalm 8:3), he meant that he really did consider it. Especially significant is his statement of David's seed, that "it shall be established for ever as the moon, and as a faithful witness in heaven". (Psalm 89:37) The moon is, indeed, a faithful witness in heaven, a witness whose testimony cannot be gainsaid.

It is the voice of God, speaking through Moses, that mentions the "precious things thrust forth by the moons". (Deuteronomy 33:14, margin) What some of those precious things are it is now the privilege of Jehovah's wit-
nesses and their companions in the chariot of Jehovah's organization to see and understand. Indeed, it is even possible that there may be some direct reference to these present minfoldings of truth that God had in mind when Fe said of this day that "the light of the moon shall be as the light of the sun".-Isaiah 30:26.

Anyway, it was infinitely wise of God to set a second hand in His timepiece, and to put it out there in the sky 289,000 miles away, far enough away that the theologians could not get at it to interfere with it , which ther would surely have done if they had been able to so do. Now it is about to put them all to shame.

Calentiar for 0,082 Years

This issue contains, on peges 368, 369, all the essentials of a calendar corering all past human history. All know that in the normal year there are 52 weeks and 1 day and that therefore in the next succeeding year, unless it is a leap year, the days of each month are one day later in the week. Thas, in the year 1933 A.D. the $22 d$ day of March came on Wednesday; in the year 1934 A.D. the gat day of March came on Thursday, while in the rear 1935 A.D. the 22d day of March comes on Firiday. In the year 1936, on account of that rear's being a leap year, the 22d day of March will come on Sunday.

The use of the calendar is rery simple. Every year is represented. If a given day of the month falls on Friday in the rear 1935, the day of the week on which that same day of the month will fall in other years is shoma at the head of the column above the year desired. Persons using the calendar must consider, in the case of leap years, that dates in Jamuary and February must be separately calculated after some other date is known. The calendar will be found very useful and valuable when the manner of using it has been mastered. It is assumed that the user has an ordinary calendar and can readily. locate a Friday in 1935 or a Thursday in 1934, from which information any other desired data regarding past days of the week may be at once obtained. This is the first time the Gregorian calendar, or any other, has ever: been projected back to creation.

Besides the calendar for 6,062 years there is also presented a table of "Lmations Ushering in the Years or Periods Which Contained the Most Important Events in History". Let the table speak for itself. There will be frequent
reference to it in the explanations of the Calendar of Jehovah God which follow.

God's Will Regurding Rorths

The years of God are not each of an equal number of monthe, nor of an equal number of weeks, nor of an equal number of days, nor of an equal number of hours, nor of an equal number of minutes, nor of an equal number of̃ seconds. Man has no right to ignore these years of God. It is his duty to number them, and to mark them well as they go, and to use them to God's praise, brt not to endeavor to fore them to begin or end at some point in no way indicated in the dirine Word of the Creator.

The months of God are not of a fixed number in the yoars of God, nor within themselves are they composed each of an equal number of weeis, nor of an equal number of days, nor of an equal number of hours, nor of an equal num. ber of minutes, nor of an equal number of seconds. Man has no right to ignore these months of God. It is his duty to number them, and to mark them well as they go, and to use them to God's praise, but not to endeavor to force them to begin where the years begin or to end where the years end.

Is it necessary to start a new year on July 4, or Thanksgiving Day, or Christmas, or Washington's Birthday, or Lincoln's Birthday? Not at all. Each of Jehorah's years properly begins at a certain point, and, reasonably enough, at the beginning of a specific day, as in the case of the months, but neither the years nor the months nor the weeks need to be in accord exactly, nor are they in accord except by man's egotistic and destructive acts.
The days in the months of God are never less than 29; and they are never more than thirty. There is a sure and proper method of determining how many days the month should have. Jehovah God fixed the method. He so arranged and ordered all the details comected with the sacrifice of His own dear Son that that event, of first importance in history, occurred at Jerusalem on the fourteenth day of the month, when the moon was at its full. The fourteenth day of each month, therefore, is that day of the month when the moon is full over Jerusalem. That automatically makes Jerusalem, not Greenwish, the tine center of the earth.

The weeks are for man, but they are of God, and no man may change the arrangement which

3900 в.द..

3700 B.C.
3601 B.

3600 B.c.e.
3501 B.G.

3500 b.c.

3100 B.C.-
3001 B.C.

3000 B.
2901 日. C

2700 b.C.

Fr Sa Su mo We th fr Sa motu We Th Sa Su mo Tu Th fr Sa Su Tu We Th fr Sa motu We

4028 b.c.
4000 B.c.-
3901 в.c.
 ($4000 \mathrm{~g} . \mathrm{C}_{\mathrm{c}}$ is a leap year)

(3900 B.C is not a leap year)

76	75	74	73	7200	99	143	97	96	95	94	93	92	91	90	89	88	87	86	85	84	83	82
78	81	80	79	78	77																	

 $\begin{array}{llllllllllllllllllllllllll}72 & 71 & 70 & 69 & 68 & 67 & 66 & 65 & 64 & 63 & 62 & 61 & 60 & 59 & 53 & 57 & 51 & 55 & 54 & 53 & 51 & 51 & 50 & 49 & 14 & 17\end{array} 4515$ (3500 b.c. is mit a leap year)

 $\begin{array}{lllllllllllllllllllllll}52 & 51 & 50 & 49 & 48 & 47 & 46 & 45 & 44 & 43 & 42 & 14 & 41 & 39 & 38 & 37 & 36 & 35 & 34 & 33 & 38 & 31 & 30 \\ 24 & 24 \\ 20 & 21 & 20 & 19 & 18 & 17 & 10 & 15 & 14 & 13 & 12 & 11 & 10 & 09 & 08 & 07 & 06 & 05 & 04 & 03 & 02 & 01\end{array}$

3200 B.C.* (3200 B.C. Is a leap year)
3101 B.c.

00	93	93	97	96	95	94	93	92	91	90	89	88	97	86	85	84	83	82	31	80	79
78	78	76	75	74	73																
72	70	69	68	67	66	65	64	63	62	61	60	54	53	57	50	55	54	53	52	51	50
9	43	47	45	45																	

 (2300 re.c. ${ }^{\text {Is }}$ a luap year)

1000 B.C.
9.1 B.c.

900 8.c.-
901 B.C.

800 B.C.
701 b.c.

700 e.c.
601 e.c.

600 B.C.*

500 E.C.
401 E.C.

900 r.c.

300 B.c.

200 B.c.
101 B.C.

4 B.C.
... $9^{38.6 .}$
A.D. 100
A.B. 199
A.D. $200-$
A.D. 209
A.D. 300 -
\qquad
A.b. $400-$
A. 8.499

101 b.c.

Fr Sa Su Mo We Th fr Sa Mo Tu We Th Sa Su Mo tu Th fr Sa Su Ta We Th Fr Sa Mo Tr We

 (900 B.C. is not a leap year)

 (800 B.c is a leap ycar)

$\begin{array}{llllllll}00 & 99 & 98 & 97 & 96 & 95 & 94 & 93 \\ 72 & 71 & 70 & 69 & 68 & 67 & 66 & 65\end{array}$
 $\begin{array}{lllllll}30 & 35 & 34 & 33 & 32 & 31 & 30 \\ 08 & 6 & 06 & 29 \\ 6 & 04 & 03 & 02 & 01\end{array}$

 i1: 030201

 121110090807060504030201

A.D. 400 is a teap yars)

fr sa Su mo We th fr Sa Mo Tu we Th sa Su mo Tu Th fr Sa Su tu we th fi su wo Tu We
2600 B.c.
2501 B.c.

 $\begin{array}{llllllllllllllllllllllll}52 & 51 & 5 & 43 & 48 & 47 & 46 & 45 & 44 & 43 & 42 & 41 & 40 & 39 & 38 & 37 & 36 & 35 & 34 & 33 & 32 & 31 & 20 & 29 \\ 24 & 23 & 22 & 21 & 20 & 19 & 18 & 17 & 16 & 15 & 14 & 13 & 12 & 11 & 10 & 03 & 08 & 07 & 06 & 05 & 01 & 03 & 02 & 01\end{array}$
2500 B.C.

2400 B.c. 2301 B.C.

400 8.c. is a leap year)

44	43	42	41	40	39	38	37	36	35	34	53	32	31	30
16	15	14	13	12	11	10	09	08	07	06	05	04	03	02
1														

22300 B.C.

2000 B.C.-
190.1 B.C.

1900 B.C.

7700 B. C. 1700 Be is

1600 B.C.- (1600 B.c. is a leap year

 $\begin{array}{llllllllllllllll}44 & 43 & 42 & 41 & 40 & 39 & 38 & 37 & 36 & 35 & 34 & 53 & 32 & 21 & 30 & 79 \\ 16 & X & 14 & 13 & 12 & 11 & 10 & 69 & 08 & 07 & 06 & 05 & 04 & 03 & 62 & 01\end{array}$
1500 B.C.
1401 B.C. $\quad 1500$ B.C. is not a lap year) 00

1300 B.C.
1201 B.c.

1100 B.C.
号
\qquad
 B. 503 is mol a luap yoary no 02020304030307030910111213141516171819

 $\begin{array}{ll}68 \\ 96 & 70 \\ 90 & 71 \\ 90\end{array}$

 $96!79599$

 A D. 7100 (A.D. 1400 is not a lcargyar)

 68697071
$96-79899$
A.D. x 00 o ($A, \mathrm{D} .1600$ is a bag yazr)

A.D. 1 T00
(A.D. 1000 is not a leap year) 161815202122032

H20 B.C.-

 returns. T 1913 - Temple. F 1922-Anointing of all nesh. \& 1926 -Time of blessedness. H ig31-New name

LUNATIONS USUERING IN THE YEARS OR PERIODS WHCLI CONTAIN THEMOST MPORTANT EVENTS OF HISTORY，STATED IN TERMS OF THE GREGORIAT CALENDAR，AND ASTRONOMICALLY EXACR

Anaiysis of						
Days in inter－ Yening fievrs		Sering and		Totals St	arting with the Now Moon Rsars	
fermat Lo．		estitibe		Veimal Equaia	（inox for tor	the Year 4028 E．C．
175	1	Ve	enar			
36505	24	Efui	fitanth	Wっため	Days	Total Seoonds
557941	376					
35505	24	1555	19245	E2183－1	558317	4810．518175．46312
119344	78	1656	20482	95405－4	694346	52258553009.435932
36504	25	1983	24526	103406－6	724203	62776 6icla 6.401376
9119	6	2083	25763	1086e5－2	760797	55732822770.376085
111346	73	210 ธ	26072	109982－5	759922	65521213615.654272
14578	10	2413	29.345	125905.5	881341	75147812545.20872
21897	15	2453	30339	127959－6	835929	77408225320．506054
14507	10	2513	31031	131120－1	917841	79301393926.312036
2214	1	2553	31576	133209－2	932458	80564369144．492175
153379	112	$25 \equiv 9$	31651	133524－5	934573	80755719359.355376
2567	2	2993	37018	156166． 2	1093154	94449312215．681565
19950	6	3000	37105	1565．3－2	1095733	94671287744．934
92340	61	3030	37476	155093－3	1196689	95517873047．540576
37951	25	3283	40605	171298－4	1199090	103601337172．35048
12424	9	3387	41s91	17б723－5	1237065	105852493296．709616
25557	16	3421	42312	178499－5	1249499	107956650742.864512
25173	17	3491	43178	182153－1	1275072	110166200263.933728
4751	3	3560	44031	185751－5	1300262	112342581027.75 ¢256
164959	117	3573	44192	186430－6	1305016	112753363329．019302
5105	4	4025	49782	210013－1	1470092	127015923344.235232
7673	5	4039	49955	210743－0	1475201	127457328559．87603
673795	447	4060	50215	211839－6	1432879	125120703704．76984
1829	2	5906	73047	308160－1	2157121	186373247197．901872
10950	6	5911	73109	308421－5	2158952	186533436655.530534
1446	1	5941	73430	309986－5	2169908	187480021958.43648
1476	1	5945	73529	310193.4	2171355	187605042558.820304
1446	1	5949	73579	310404－4	2172532	137732614802．069104
1830	1	5953	73628	$310611-2$	2174279	187857635502.452923
353	1	5958	73690	310872－6	2176110	185015824960．08144
2122	－	5959	73702	310923－2	2176464	183046442274．451152
		596	737	$311083-5$	2177595	188143397103．33024

Time shown in each case is Jerusalem time， 7 hours 20 minutes 32 seconds earlier than Easteru Standard time．Each calculation was checked to the one preceding and the one finowing，and in every instance with the 1955 A．D．date shown，with which agreement is exact．The fariations oz a c d $\mathrm{e} f \mathrm{~g}$ ，amonating respectively to about 8 ， 10 ， 14 ， $4 \frac{2}{2}, 10,15$ ，and 3 hours，after calculations extending orer 5.10 years，are not due to any errors in the calculations themselves，but to variations from the mean luvation；exuaned in full in its proper place．In figuring eclipses and other periods astronomers calculate the mean time between hmations as 2551442.864376 seconds．（Their method is to express the time in days and decimals thereof，but the resalts are the same either way．）These figures，astronom－ ically exact to a millionth of a second，are used in all the abore calculations．

God made．No man may alter the number of dars in a week；in these days（since the French Revo－ lution calendar fiasco）none but a theologian， with huge conceit and no reverence for God， would contemplate for a moment such an act of presumption．Man may number his weeks； there is no harm in so doing．Since God is so good as to give them，it would seem that，at least once a year，man might take note of their number．

Learning Someihing About God＇s Morths

It seems strange that man＇s months should be so different from God＇s months，that the two kinds of months could be going along steadily side by side，overlapping each other，etc．，and yet most people know next to nothing about the particular kind of months that God provided for the nocturnal government of the earth． On page 371 begins a lunation experience table，
carefully compiled from records in the New York Public Library，covering the fifty years from 1886 to date．The moons are here num－ bered by The Golden Age，the one for Janu－ ary 5,1886 ，being numbered 73131；thereafter： they are in sequence down to 73761，the number of the lunation for December 13，1936，which is as far as the compilation goes．This table is in Jerusalem time， 7 hours 24 minutes 52 seconds earlier than Eastern Standard time．It is quite self－explanatory．God＇s months are of 29 or 30 days each；their moons rise at various times of the day or night，on various days in the week， as specified in the first eight columns，the table concluding with the dates grouped under the word＂Actual＂．

The＂mean lunation＂is universaily agreed by astronomers to be 29.530588715 days．Otherwise stated，this is 29 days 12 hours 44 minutes 2.864976 seconds；or it may be stated altogether

Lunation Experience Table，Jerusalem Time

（Jerusalem time is 2 hours 25 minutes＊earlier［faster］than Greenwich；or 7 hours 25 minutes earlier than Eastern Standard time．To get Jerusalem time，therefore，add 7 hours 25 minutes to Eastern Standard time．）
（＊24 minutes 52 seconds）

Mocn	Days	Actual			Meall			Mins． OV： $29 \mathrm{D}_{5}$	Compared with next Slow Fast hr mi hr mi		Compared with Mean Slow Fast		Actual					Whean			Hins． over	Compared with next Slow Fast		Compared with Mean Slow Fast			
			Date	Time		Date	Tinte				moon	Days	Date		Time	$\begin{aligned} & \text { Date } \quad \text { Time } \\ & 1890 \text { A.D. } \end{aligned}$			29 Ds	s hr mil hr mi		hr mi hr mi					
						1836 A．																					
73131	30	Tu	U Jan 5	$510: 13 \mathrm{am}$	TH	Jan 5	7：31pm	1170	646			918	73181	29		Tu	Jan 2	21 2：18am		Tu	Ian 21	8：11am	639		205		553
73132	30	Th	Feh 4	4 5：43am	Th	Feb 4	8：1इаи	1130	606			232	73182	29	We	Feb 1	$1912: 57 \mathrm{pm}$	We	Feb 19	8：55pm	633		211		758		
73133	29	Sa	Mar 6	612：33am	Fr	Mar 5	8：59pm	586	342		334		73183	30	Th	war 2	2 ll 30 pm	F？	Mar 21	9：39am	665		139		1009		
73134	30	Su	Apr 4	4 4：59pm	Su	Apr 4	9：43am	752	28	8	716		73184	29	Sa	Apr 1	19 10：35am	Sa	Apr 19	10：23pm	733		31		1148		
73135	29	Tu	雨ay 4	4 6：11am	H0	May 3	10：27p：n	613		231	744		73185	30	Su	May 1	$1811: 48 \mathrm{~mm}$	Mo	May 19	11：07am	819				1219		
73136	30	We	¢ Jun 2	2 4：24pm	We	jun 2	11：Ilam	491		433	513		73186	30	Tu	Jun 1	17 12：27pm	Tu	Jun 17	$11: 51 \mathrm{pm}$	892	208			1124		
73137	29	Fr	Jul 2	2 12：35am	Th	Jul 1	11：55pm	440		524	40		73187	29	Th	Iul 1	17 3：19am	Th	Jul 17	$12: 3 \mathrm{Fmm}$	930	246			916		
73138	29	Sa	Jul 31	31 7：55am	Sa	Ju！ 31	12：39pm	445		516		444	73188	30	Fr	Aug 1	15 6：49pm	Sa	Aug 16	1：19am	933	249			630		
73139	29	Su	Aug 29	29 3：23pm	H0	Aug 30	1：23am	504		420		1000	73189	30	Su	Sep 1	14 10：22am	Su	Scp 14	2：03pm	912	228			341		
73140	30	Mo	0 Sep 27	27 11：47pm	Tu	Sep 28	2：07pm	597		247		1420	73190	29	Tu	Det 1	4 1：34am	Tı	Oct 14	2：47am	873	149			113		
73141	29	We	e 0ct 27	27 9：44an	Th	0ct 28	2：51am	723		41		1707	73191	30	We	Nov 1	12 4：07pm	We	N3\％ 12	3：31pm	813	49		36			
73142	30	Th	Nov 25	25－9：49pm	Fr	Nor 26	3：35pm	877	153			1748	73192	29	Fr	Dee 1	12 5：40am	Fr	Dee 12	4：15am	734		30	125			
73143	30	Sa	Dec 25	25 12：24par	Su	Dic 25	4：19am	1027	423			1555															
73144	30	Mo	2 Jan 24	24 5：31am	Mo	Jan 24	5：03pm	1119	555			1132							$18 \% 1$								
													73193	30	Sa	Jan 1	10 5：54pm	Sa	Jan 10	4：59pm	647		157				
						1887 A．							73194	29		Feb	9 4：41am	Mo	Fell 9	5：43am	579		305		102		
73145	29	We	c Feb 23	23 12：10am	We	Fell 23	5：47am	1109	545			537	73195	29	Tu	Mar 10	0 2：10pm	Tu	har 10	6：27pm	546		338		407		
73146	30	Th	Mas 24	24 6：39pm	Th	Mar 24	6：31pm	1003	359		08		73196	30	We	Apr	8 11：26pm	Th	Apr 9	7：11am	559		325		745		
73147	30	Sa	Apr 23	$2311: 22 a m$	Sa	Api 23	7：15am	853	129		407		73197	29	Fr	Way	8 8：45am	Fr	May 8	7：55pm	610		234		1110		
73145	29		開的 23	23 1：35am	Su	Hay 22	7：5゙pm	707		57	536		7315	30	Sa	Jun	6 6：55pm	Su	Jull 7	8：35am	693		111		1344		
73149	29	Tu	Jun 21	21 1：22pm	Tu	Jun 21	8：43am	593		251	439		73199	29	Mo	Jul	6 6：23am	Mo	Jul 6	9：23－mm	794	30			1455		
73150	30	We	Jul 20	$2011: 15 \mathrm{pm}$	We	Jul 20	9：27pm	533		351	148		73200	30	Ta	Aug	4 7：42pm	We	Aug 5	10：07am	903	219			1425		
72151	29	Fr	Aug 19	19 8：0̧3am	Fr	Aug 19	10：11am	501		423		203	73201	30	Th	Sep	$310: 45 \mathrm{am}$	Th	Sep 3	10：51pm	1002	358			1206		
72152	30	Sa	Sep 17	17 4：29pm	Sa	Sep 17	$10: 55 \mathrm{~mm}$	516		408		626	73202	29	Sa	Oct	3 3：27am	Sa	0et 3	11：35am	1055	451			808		
73153	29	M0	－oct 17	17 1：05am	H0	Oet 17	11：ड9am	573		311		1034	73203	30	Su		1 9：02pm	Mo	Nov 2	12：19am	1032	428			317		
73154	29	Tu	Nov 15	15 10：38am	We	Hov 16	12：23am	673		131		1345	73204	30	Tu	Dec	$12: 14 \mathrm{pm}$	Tu	Dec 1	1：03pm	935	251		111			
73155	30	We	e Dec 14	14 11：51pms	Th	Dec 15	1：07pm	797	33	3		1516	73205	29	Th	Dec 3	31 5：49am	Th	Dec 31	1：47am	799	35		402			
73156	30	Fr	Jan 13	13 11：08am	Sa	$\operatorname{Jan} 14$	1：51an	914	230			1443															
						1338 A．D													1892 A．D								
73157	29		Fch 12	12 2：22am	St	Fet 12	2：35pm	989	345			1213	73205	30	Fr	Jan 29	9 7：08pm	Fr	Jan 29	2：31pm	668		136	37			
73158	30		Mar 12	12 5：51pm	Tu	Har 13	3：19am	1006	402			828	73207	29	Su	Feb 28	8 6：16am	Su	Feb 28	3：15am	571		313	301			
73159	30	We	e Apr 11	11 11：37am	We	Ap： 11	4 4：03mm	976	332			426	73208	30		Mar 28	8 3：47pm	M0	Mar 28	3：59jm	509		415		12		
73160	29	Fr	May 11	11 3：53am	Fr	May 11	4：17am	911	227			54	73209	29		Apr 27	27 12：16am	We	Apr 27	4：43am	482		442		427		
73161	30		Jun 9	9 7：04pm	Sa	Jin 9	5：31pm	822	58	3	133		73210	29	Th	May 26	8：18an	Th	阿ay 26	5：27pm	498		426		909		
73162	29	PTo	－Jul 9	9 8：46anı	M0	Jul 9	6：15em	724		40	231		73211	30	Fr	Jun 24	4：36pm	Sa	Jun 25	6：11am	564		320		1335		
73163	30	Tu	Aug 7	7 B：50pm	Tu	Aly 7	6：59pm	636		2081	151		73212	29	Su	Jui 24	4 2：00am	Su	Juf 24	6：55pm	688		116		1655		
73164	29	Th	Sep 5	ك 7：26am	Th	Sep 6	7：43am	575		306		17	73213	30		Aug 22	1：28pm	Tu	Aug 23	7：39am	857	133			1811		
73165	30	Fr	Get 5	5 5：04pa	Fr	Cet 5	8：27pm	568		316		323	73214	29	We	Sep 21	$1{ }^{3: 45 a m}$	We	Sep 21	8：23pm	1028	424			1638		
73166	29	Su	Nov 4	4 2．32am	Su	N－ 4	9：11am	603		241		639	73215	30	Th	0ct 20	08.853 pm	Fr	0ct 21	9：07am	1135	611			1214		
73167	29	Mo	－Dec 3	$312: 35 \mathrm{~mm}$	Mo	Dec 3	9：55pm	662		142		920	73216	30	Sa	Nov 19	9 3：48pm	Sa	Hov 19	9：51pm	1134	610			603		
73163	30	Tu	Jan 1	$111: 37 \mathrm{pm}$	Tu	Jan 2	10.35 mm	722		42		1102	73217	30		Dec 19	910：42am	Mo	Dec 19	10：35am	1035	431		07			
						1889 A．D													893 A．D								
73163	30	Th	Jan 31	31 11：39am	Th	Jan 31	$11: 23 \mathrm{pm}$	771	07	7		1144	73218	29	We	Jan 18	8 3：57am	TJ	Jan 17	11：19pm	889	205		438			
73170	29	Sa	Mar 2	2 12：30an	Sa	Mar 2	12：075m	816	52	2		1137	73219	30	Th	Febl 16	6 6：46pm	Th	Feit 16	12：03pm	737		27	643			
73171	30	Su	mar 31	31 2：05pm	hio	Apr 1	22：51am	868	144			1045	73220	29	Sa	Mar 18	8 7：03am	Sa	Mar 18	12：47am	601		243	616			
73172	29	Tu	Apr $=0$	0 4：34an	Tu	Adr 30	1：35pm	515	231			901	73221	30	Su	Apr 16	6 5：04pm	Su	Apr 16	1：31pm	492		432	333			
73173	30	We	May 25	29 7：49pm	Th	finy 30	2：19am	934	250			630	73222	29	Tu	May 16	6 1：16am	Tu	May 15	2：15am	424		540		59		
73174	30	Fr	Jun 23	$2311: 23 \mathrm{am}$	We	Jun 23	3：0309	907	223			340	73223	29	We	Jun 14	4 8：20am	We	Jun 14	2：5spm	416		548		639		
73175	29	Su	Jul 28	28 2：30am	St	」：128	3：47am	839	115			117	73224	29	Th	Juil3	3 3：16pm	Fr	Jul 14	3：43am	481		443		1227		
73176	30	Ho	Aug 26	26 4：29pm	Mo	Aug 26	¢iSlpm	762		02			73225	30	Fif	Aug 11	$111: 17 \mathrm{pm}$	Sa	Aug 12	$4: 27 \mathrm{pm}$	617		227		1710		
73177	29	We	Sep 25	25 5：11am	We	E㳄 25	3：59am	704		100		04	73226	29	Su	Sep 10	0 9：34am	Mo	Sep 11	5：11am	802	38			1937		
73778	30	Th	Oet 24	24 4：55pm	Th		5： 29 pm	678		126		104	73227	30	Mo	Oct	9 10：55pm	Tu	Bet 10	5：55pm	950	346			1859		
73179	29	Sa	Nov 23	33 4：13am	Sa	Hey 23	6：13am	668		136		230	73228	30	We	Nav 8	8 3：26pm	Th	Noy 9	6：39am	1123	559			1513		
73180	30	Su	Dec 22	22 3：21pin	Su	Dict 22	$7: 27 \mathrm{pm}$	657		147		406	73229	30	Fr	Dec 8	$810: 09 \mathrm{am}$	Fr	Dec 8	7：23pm	1167	643			914		

in seconds as 2551442.864976 seconds．This stating of time in such detail as to take note of millionths of a second seems strange to most practical persons，but is in regular use among astronomers．

Astronomers Must Love Truth

It may as well be settled that astronomers love truth in the abstract．They must；their business requires it．It was of great interest in New York city some years ago when an eclipse was due．The astronomers，as a matter of their
common duty to mankind，announced the exact time the eclipse would occur．Additionally，they stated that the edge of totality of the eclipse would be＂somewhere between 145th street and 165th street in upper New Yorl＂．When the eclipse came，its edge of totality was at 155 th street，just halfway between．This was not an accident，but the result of careful calculations．

In the year 1846 two astronomers，Adams in England，and Leverrier in France，located the planet Neptune（the existence of which was suspected，but not known）by the use of astro－

Moon	Days	Aciual			蘭eatt			Mins． over 29 Ds	Compared with next Slow Fast hr mi hr ml		Compared with Mean Slow Fast hr mi himi	
			Date	Time		Date	Time					
2894 A．D．												
73230	30	Su	Jan 7	7 5：38аm	Sll	Jan 7	8：07am	1118	55			231
73231	29	Tı	Feb 6	$612: 14 \mathrm{~mm}$	Mo	Feh 5	5 8：51pm	993	349		323	
73232	30	We	Phar 7	7 4：47pm	We	Mar 7	9：35am	822	58	8	712	
73233	29	Fr	Apr 6	6 6：29am	Th	Apr 5	10：19pm	642		202	810	
73234	30	Sa	開豆 5	5 5：11pm	Sa	May 5	$511: 03 \mathrm{am}$	494		430	608	
73235	29	開o	Jun 4	4 1：25am	Sus	Jun 3	$311: 47 \mathrm{pm}$	409		555	138	
73236	29	Tu	Jul 3	3 8：14am	Tu	Jul 3	12：31pm	399		605		417
73237	29	We	Aug 1	1 2：53pm	Th	Aug 2	2 1：15am	450		504		$\underline{1022}$
73238	30	．Th	Aug 30	10：33pm	Fr	Aug 31	1：52pm	580		304		1526
73239	29	Sa	Sep 29	29 8：13am	Su	Sep 30	2：43am	733		31		1830
73240	30	Su	0ct 28	8 8：26pm	P6	Oct 29	$3: 27 \mathrm{pm}$	897	213			1901
73241	30	Tu	Noy 27	$711: 23 \mathrm{am}$	We	Nov 28	4：11am	1046	442			1648
73242	29	Th	Dec 27	7 4：49am	Th	Dec 27	4：55pm	1146	62			1206
1895 A．D．												
73243	30	Fr	Jan 25	2511：55pm	Sa	Jan 26	5：39am	1157	633			544
73244	30	Su	Feb 24	7 7：12pm	Su	Feb 24	6：23pm	1062	458		49	
73245	30	Tu	陑ar 26	12：54pm	Tu	Mar 26	7：07am	885	202		547	
73246	29	Th	Apr 25	25 3：40am	We	Apr 24	7：51pm	695		109	749	
73247	30	Fr	may 24	4 3：15pm	Fr	May 24	8：35am	545		339	640	
73248	29	Sla	Jun， 23	3 12：20am	Sa	Jun 22	9：19pm	461		503	301	
73249	29	H10	Jil 22	22 8：01am	Mo	Jul 22	10：03am	444		520		202
73250	29	Tu	Abg 20	O 325 pm	Tı	Aus 20	10：47pm	479		445		722
73251	30	We	Spp 18	8 11：249m	Th	Sep 19	11：31am	555		329		1207
73252	29	Fr	Cet 18	8 8：39am	Sa	Oct 19	12：15pm	661		143		1536
73253	30	Sa	Nov 16	$6 \quad 7: 40 \mathrm{pm}$	Su	Nov 17	12：59pm	798	34	4		1719
73254	30	Mlo	Dec 16	6 8：58am	14	Dec 17	1：43an	951	307			1645

1896 A．D．

73255	29		Jan 15	5 12：49am	Wo	Jan 15	2：27pm	1073	509			1338
73256	30		Feb 13	3642 mm	Fr	Feb 14	3：11am	1115	551			82
73257	30	Sa	Mar 14	4 1：17pm	Sa	Har 14	3：55pm	1055	451			233
73258	29	Bilo	Apr 13	3 6：52am	W0	Apr 13	4：39am	924	240		213	
73259	30	Tu	May 12	$210: 16 \mathrm{pm}$	Tu	May 12	$5: 23 \mathrm{pm}$	776	12		453	
73260	29	Th	Jun 11	$111: 12 \mathrm{am}$	Th	Jun 11	6：07am	652		152	505	
73261	30	Fr	Jul 10	0 10：04pm	Fr	Jul 10	6：51pm	567		317	313	
73262	29	St	Aug 9	9 7：31am	Su	Ald 9	7：35am	521		403		04
73263	30	${ }^{1}$	Sop 7	7 4：12pm	Ho	S¢ 7	$8: 19 \mathrm{~mm}$	515		409		407
73254	29	We	Get 7	7 12：47am	We	0 ot 7	9：03am	549		335		816
73265	29	71	Noy 5	5 9：56am	Th	Noy 5	9：47pm	624		220		1151
73266	29	Ft	Deo 4	4 8：10pm	Sa	Dee 5	10：31am	732		32		1411

1897 A． \mathbf{D} ．

73267	30	Sa	Jan 3	3 8：32am	Su	Jan 3	11：15pn	850	126			14.4
73258	30	Mo	Feit 1	$110: 42 \mathrm{~mm}$	Tu	Fefi 2	11：59am	943	259			1317
73269	30	He	mas 3	3 2：25pm	Th	Mar 4	4 12：43am	988	344			1018
73270	29	Fr	Apr 2	2 6：53am	Fr	Apr 2	1 $1: 27 \mathrm{pm}$	932	338			634
73271	30	Sa	hay 1	I 11：159m	Su	Hay 2	2 2：11am	940	256			256
73272	30	Wo	May 31	I 2：55pm	\％${ }^{\text {H }}$	Hay 31	2：55pm	869	145			
73273	29	We	Jun 30	－ $5: 24 \mathrm{am}$	We	Jun 30	3：39am	783	19		145	
73274	30	Th	Jil 29	6：27pm	Th	J4！ 29	4：23pm	691		113	204	
73275	29	Sa	Aus 28	8 5：58am	Sa	Aly 28	5：07a11	517		227	51	
73276	30	Su	Sop 26	4：75pm	Su	Sup 26	5：51pm	582		302		135
73277	29	Tu	0 gt 26	6 1：57am	Tı	tct 26	6：35am	592		252		433
73275	29	We	Eloy 24	111：49am	We	Wav 24	7：199m	635		209		730
73279	30	Ti	Deg 23	$310: 24 \mathrm{pm}$	Fr	Dee 24	8：03am	685		115		939

1595 A．D．

73280	29	Sa	Jail 22	9：53am	Sa	Jan 22	$8: 47 \mathrm{pm}$	736		28	$105+$
7328．	30	S_{1}	Fel 20	10：09pm	Mo	Feh 21	9：31am	777	13		1122
73282	30	T！	Mar 22	11：06am	Tu	Nat 22	10：15pm	823	59		1169
73283	29	Th	Api 21	12：49am	Th	Apr 21	10：59an	878	154		1010
73284	30	Fr	May 20	3：27pm	Fr	May 20	11：43mm	911	227		815
73295	29	Su	Iu： 19	6：38an	Su	Juti 19	12：27pm	938	254		549
73286	30	Mo	dul 13	10：16ım	TJ	Ju！ 19	1：11am	887	203		253
73287	30	W2	A 4 Lg 17	1：03pm	We	Aug 17	1：55pm	816	52		52
73288	29	Fr	Sop 16	2：398m	Fr	Sep 16	2：39am	747		17	
73289	30	Sa	Oct 15	3：06pm	Sa	0tt 15	3：23pm	703		101	17
73290	29	Mo	Nov 14	2：49am	Mo	Nov 14	4：97am	683		121	118
73291	30	Tb	Dec 13	2：12pm	T＊	Dect 13	4：51pm	656		138	239

1899 A．D．											
73292	29	Tif	Jan	12 1：13am	Th	Jail 12	2 5：35am	652		152	417
73293	29	Fr	Feb	$1012: 10 \mathrm{pm}$	Fr	Fet 10	－ $6: 19 \mathrm{pm}$	611		233	609
73294	30	Sa	mar	$1110: 21 \mathrm{pm}$	Su	Mar 12	2 7：03am	628		216	842
73295	29	Mo	Apr	10 8：49am	Mo	Apr 10	－7：47pm	678		126	1058
73296	30	Tu	May	9 8：07pm	We	開ay 10	0 8：31an	762		02	1224
73297	29	Ti	Jun	8 8：49am	Th	Jun \％	\％9：15pm	351	127		1226
73298	30	Fi	Jul	$711: 00 \mathrm{pm}$	Sa	Joil ${ }^{\text {c }}$	\％9：59am	917	233		1059
73299	30	Sil	Aug	6 2：17pm	\mathcal{S}^{4}	Auj 6	610；43pm	945	301		826
73300	29	Tu	Sep	5 6：02am	Tu	Sep 5	511：27am	941	257	＊	525
73301	30	Wa	Oct	4 9：43mm	Th	Oot 5	5 12：11am	912	228		228
73302	30	Fi	ERy	3 12：55mm	Fr	Nay 3	$312: 55 \mathrm{pm}$	851	137		
73303	29			3 3：16am	Sul	Dac 3	3 1：39a	785			

nomical calculations very similar to those used in this series of articles．

In figuring the mean calculations shown in the central part of the tables，No．73176，August 26， 1889，was taken as the starting point，because it was only about 2 minutes away from the mean generally used by astronomers for current cal－ culations，that is， 29 days 12 hours 44 minutes （seconds being dropped）．From this starting point the calculations were carried backward to January，1886，and forward to December， 1936.

The next column，entitled＂Minutes over 29 Days＂，is a very useful one for purposes of study．Each moon is a period of 29 days and a certain number of minutes in addition．The total number of minutes over 29 days between this moon and the one next following it is given． Thus，from the new moon of Tuesday，Janu－ ary 5,1886 ，at $10: 13 \mathrm{a} . \mathrm{m}$ ，to the new moon of Thursday，February 4，1886，at 5：43 a．m．，was 29 days and 1，170 minutes．See Nos． 73131 and 73132.

In the next two columns each moon is com－ pared with the one next to it．Thus，it being taken for truth that the normal time from one new moon to another is 29 days， 12 hours and 44 minutes，that is， 29 days and 764 minutes，if a moon takes 29 days and 1，170 minutes，it is slow by the difference，which is 406 minutes （ 6 hours 46 minutes）．

The Moon Runs Fast

The experience tables show that the moon has the habit of rumning ahead of its schedule（if such an expression is permissible）．Thus，ac－ cording to the＂Mean＂the moon on January 5， 1886，was not due to rise until 7：31 p．m．of that day，but，as a matter of fact，it rose 9 hours 18 minutes carlier；so it was fast by that amount of time．

The lover of Jehovah God will now be greatly interested in the accompanying chart of luna－ tions which shows the beautiful and graceful manner in which the moon keeps care of the seconds of the great Creator．It instantly ap－ pears that there is order，not the order of cogs and gears and rattling machinery，but the order of rhythm on a magaificent scale．But first an－ other glance at the tables．

Take note of the last four columns of the tables and note how the moon is usually for seven moons fast，then for seven moons slow，etc．，as compared with those that have gone before；it

Convared compared
 7331529 Sa Dec 22 2：3̂2am Fr Dec 21 11：11pm 875151

1901 A．D．										
73317	30	St	Jan 20	5：05pm	Su	Jan 20	11：55am	729		35
73315	29	Tu	Fod 19	5：14am	Tu	Feb 19	12：39am	603		233
73319	30	We	Mar 20	3：22mm	Wo	Mar 29	1：23pan	524		400
73320	2）	Fr	Apr 19	12：06am	Fr	AD： 19	2：07am	431		443
72321	29	Sa	Ray 15	E：07a：1	Sa	May 18	2：51pm	475		449
73322	30	Su	Jus 16	4：02 pm	Mo	12n 17	3：35am	517		407
75323	2.	Tı	Jit 16	12：35am	Id	Jul 16	4：15pm	617		227
73224	23	We	Aus 14	10：56am	Th	Asg 15	5：03am	771	07	
73325	20	Th	Sep 12	11：47pm	Fr	S：0 13	5：47pm	953	309	
73326	30	5 S	act 12	3：40pm	Su	Oot 13	$6: 31 \mathrm{~mm}$	1103	539	
73327	30	Mo	Nov 11	10：03atil	Ho	Nov 11	7：15pm	1159	655	
73323	29	We	Dec 11	5：22am	We	Dะ¢ 11	7：59am	1101	537	

1902 A．D．											
73329	30	Th	Jan 919．43nm	Th	Jari 9	3：930\％	967	323		300	
$733=0$	30	Sa	Feb 8 3：5Cam	sa	F¢b 8	3 9：2\％atm	809	45		623	
73331	29	Mo	Har 10 5：19am	Sa	Mas 9	910：11pm	650		144	708	
75332	30	Tu	Apr 8 4：19mm	Tu	Apr 3	320：ごan	535		343	524	
73233	29	T ${ }^{\text {a }}$		We	Mey	713950	485		513	135	
73334	29	Fr	Jun 6 8：40am	Fr	Jan 6	612：2\％m	403		556		343
73325	29	Sa	Jal 5 3：23mm	Su	10） 6	6 105mm	$4: 8$		526		939
73336	30	Su	Aw 3 10：4Gpm	hiod	Asg 4	4 ב．53pa	$5 \div 2$		342		1505
73537	29	Tu	Ssp 2 7：48pm	H？	S5 3	3 2：352n	71.0		54		1847
73333	30	Wa	0et 1 7：38am	Tit	Cet 2	2 2：590m	904	220			1941
73339	30	Fr	Cct 31 10：42am	Sa	Hue 1	1 40357	1071	507			1721
73340	29	Su	Nov 30 4：33am	Sa	Nuy 20	为	$\underline{1150}$	636			1214
73341	30	閐	Die $2911: 53 \mathrm{~cm}$	T：	Dec 30	2：ETa品	1154	630			538
1903 A．3．											
73342	30	Wa	Jan 28 7：07mm	We	Jこп 28	6：150m	1061	457		52	
73343	30	Fr	Feb $2712: 489 \mathrm{~m}$	Fr	Fith 27	6：E玉an	907	223		549	
73344	29	Su	阿ar 27 3：55am	Sa		7 7530 m	725		38	212	
7.345	30	炜O	Apr 27 4：01pm	［10	A， 3127	7 8：27am	557		327	734	
7034．6	29		Alay 27 1：15am	Tu	May 26	6 9：11？	$4 \div 2$		522	407	
73347	29	Th	Jan 25 8：A0an	71	Jth 25	5 5：50．an	325		609		115
73343	23	Fi	Jul 24 3：15pm	Fr	Jail 27		425		539		724
75349	30	Sa	Aug 22 10：20nm	\＆ 4	Alog 23	11－2こan	523		404		1303
7330	29	His	S．p 21 7：COm	Tu	Sep 22	12：57am	6.9		145		1707
73551	20	Tu	0ot 20 5：59par	We	Cet 21	12：5\％－m	890	56			13.52
73352	29	Th	Nov 19 7：39am	Fr	H－v29	1：3Emm	976	332			1756
73353	30	Fr	Dec $1511: 55 \mathrm{pm}$	Sa	D：c 19	2：19pm	1100	556			1424

1904 A．D．

73354	30	Su	Jan 17	7 6：15pm	Ho	Jan 18	3：03：m	1153	634			848
73355	30	Tu	Feb 16	$61: 33 \mathrm{pm}$	Tu	Feb 16	6 3：47pm	1115	551			214
73355	30	Th	Mar 17	7 8：03am	Tis	Mar 17	7 4：3］¢m	974	330		337	
73357	29	Sa	Apr 16	$612: 22 \mathrm{~mm}$	Fr	Apr 15	5：15pm	735	21		707	
73353	29	Su	May 15	5 1：27pm	Sı	成列 15	5 5：59，m	612		232	728	
73359	30	${ }^{\text {f }}$	Jun 13	$311: 35 \mathrm{ma}$	H0	Jun 13	6：43pm	497		427	456	
73360	29	We	Jol 13	3 7：56am	We	Jul 13	7：27am	451		513	29	
73361	29	Th	Aug 11	1 3：27pm	Th	A U 11	8：11pm	465		459		444
73362	30	Fr	Sep	911：12pm	Sa	Sep 10	8：5－am	522		402		943
73363	29	Sut	Oct	9 7：54am	Su	Oct 9	9：39pm	611		233		1345
73354	30	Mo	Hoy	7 6：05pm	Tu	Nov 8	810.23 mm	730		34		1618
73365	29	We	Deg 7	7 6：15am	We	Dec 7	11：07pm	871	147			1652

is not always for seven fast and for seven slow， but is so 73 percent of the time，a few sixes， eights and nines being sprinkled in．
Note again from the tables that the moon is in the habit of running fast not only with respect to the previous moon，but with respect to its mean lunation；for about $91 / 2$ lunations it is fast with respect to its mean，and then，for 4 luna－ tions，slow until the balance is recovered．
The way the astronomers put it is that the moon has a maximun eccentricity of orbit of 1.61959788103203 days．That is to say，stating this in a manner suitable for the general reader， the variation over any period of years，no matter how remote，will be not more than 1 day 14 hours 52 minutes $131 / 4$ seconds．But the differ－ ences need not be of such an amount，and by proper care in taking the right kind of starting point the total difference over so long a period as 6,000 years will be only an hour or so，as will be shown．

Metonic Cycle and the God of Order

Men have been studying the moon many cen－ turies．It is now about 2,400 years since the astronomer Meton discovered that after 235 lunations the new moon usually rises on the same day of the month that it did 19 years be－ fore．Thus，compare No．73131，January 5，1886， with No．73366，January 5，1905，or any two moons 235 lunations apart，and it will be found that this is nearly exact．The Callippic cycle is a refinement of the Metonic，in which 1 day is dropped every fourth Metonic cycle，to make the Metonics come out more nearly exact over longer periods of time．

Of muclu greater interest is the saros or eclipse cycle of 223 moons，used by all astron－ omers in calculating time of eclipses．Every 223 moons the moon is back where it was，if such an expression may be used．The chart（pages 374－375）helps to make this clear．Note again the data regarding the first moon mentioned in the table，No．73131，of January 5，1886；now note its position on the chart．Then add 223 moons，reaching to No．73354，of January 17， 1904 （a period of $6,580.32$ days，or 18 years and 10.32 or 11.32 days，depending on how many leap years are in the period），and notice on the chart that the moon is in the same relative posi－ tion that it was at first．Compare any two moons 223 moons apart，and note the results．

Take the time to pay very special attention to this eclipse cycle feature，as it is the key to

CHART OF LUNATIONS 1886-1911 A.D.

CHART OF LUNATIONS 19V-1937 A.D.

unlocking the past. By means of this key astronomers have located many events which occurred hundreds of years before Christ. The chroniclers mentioned eclipses with much exactness, with the result that the dates could be exactly located.

Calculations in the Golden Age office show that in six thousand years the eclipse cycle locates a certain moon with absolute accuracy. It is on this wise: There were 73,740 moons from the lunation nearest the spring equinox of 4028 B.C. to the lunation nearest the spring equinox of A.D. 1935. There are 223 moons in an eclipse ercle; i.e., in 73,740 moons there are 330 eclipse ercles and 150 moons besides. Accordingly, 150 moons back from moon No. 73740 , moon No. 73590 (of February 15, 1923) should be in exactly the same position in the heavens as the one some 5,950 years earlier (in 4028 B.C.) ; and such is the case.
At 29.530588715 days each, 73,590 moons amount, in total, to $2,173,156$ days and about $3 \pm$ minutes over. In 330 eclipse cycles, at 6,585.32 dars per cycle, the total days are $2,173,155.6$ dars. In 5,950 years the moon is in the same position, and positively identifable, with a total aifference in the two calculations of less than 10 hours 3 minutes.

Getting Ready to Explore the Past

With this divinely provided measuring rod there will now be made an exploration of the past. particularly those passages in Holy Writ in Wich certain things are said to have taken place at such and such a time in such and such 8. moon. The right place to start inquiry is with the moon nearest at hand, say the one which is nearest to the vernal equinox in the year A.D. 1035. This new moon makes its appearance, astronomically speaking, at Los Angeles, Calif., at 4: 11 a.m., Wednesday, April 3; on the 75th meridian, near New York and Philadelphia (Eastern Standard Time), at 7:11 a.m. on the same day, and at Jerusalem at 2:35:52 p.m. on the same day.

It is desired to ascertain as accurately as possible just when, astronomically, the new moon rose, in the year 4028 B.C., at the time nearest the vernal equinox. Remembering the accuracy of the eclipse cycle, one could wish to start backward from the moon which exactly corresponds in its movements with the one around the middle of Jiarch, 4028 B.C., but to do this it would be necessary to start with moon No. 73590, of February 15, 1923.

Compared Compared

1913 A．D．												
73465°	30	Tu	Jant	712：58pm	We	Jan 8	$812: 2 \overline{7 a m}$	1133	609			1129
73456	30	Th	Feb	6 7：51am	Th	Feb 5	5 I：Inpm	1141	517			520
73467	29	Sa	Mar	8 2：52am	Sa	War 8	8 1：53am	1045	441		57	
73468	30	Su	Apr	6 8：17pm	Su	Apr 6	6 2：39pm	877	153		538	
73469	29	TıI	May	$610: 54 \mathrm{am}$	Tu	部ay 6	63.23 am	692		112	731	
73470	30	We	Jun	$410: 26 \mathrm{pm}$	We	Jan 4	44.07 pm	549		335	619	
73471	29	Fr	JuI	4 7：35am	Fr	Jul 4	4 4：5lam	472		452	244	
73472	29	Sa	Aug	$23: 27 \mathrm{pm}$	Sa	Aug 2	2 5：35pm	460		504		20 098
73473	30	Su	Aug 3	$3111: 07 \mathrm{pm}$	開0	Sep 1	1 6：19am	499		425		712
73474	29	Tu	Sep 3	30 7：26am	Tu	$\operatorname{sep} 30$	7：0spm	572		312		1137
73475	30	We	oct 2	29 4：58pm	Th	Oct 20	7：47am	672		132		1449
73476	29	Fr	Hov 2	28 4：10am	Fr	Roy 28	\％ 519 pm	803	34			1621
73477	30	Sa	Det 2	27 5：28pm	Su	Dee 23	9：1三am	935	251			1547

1914 A．D．

1915 A．D．
7349030 Fr Jan 15 5：11pm Sa Jan 15 6：47am 7349129 Su Febl4 7：00an Su Feb i4 7：31pm 7349230 Mo 開ar 15 10：11pm Tu Mar 16 8：15am 7349330 We Apr 14 2：04pm We Apr 14 6：59pm 7349429 Fr may 14 6：00am Fr May 14 9：＋3am 7349530 Sa Jun 12 9：26pm Sa Jain 12 10：27pm
 7349729 W6 Auty II 1：21am Tu Aus 10 II：559n 73458 30 Th Sen 9 1：21pm Th Sep $912: 396 \mathrm{~m}$ 7349929 Sa Det $912: 11 \mathrm{am}$ §a Det 9 1：23an 7350029 Su ：30y $710: 21$ am Su Noy 7 2：07m 7350130 Mo Bee 6 B：32pm Ti Deo 7 2；5in

1916 A．D．

73502	29	Wo	Jant 5	7：14am	We	Jen 5	2：35m	680		124		821
73503	30	Th	Feh 3	6：34pri	Fr	Feb 4	4：19am	712		52		945
73504	29	Sa	尚ar 4	6：25am	Sa	Mar 4	5：03mm	744		20		1037
73505	30	Su	Apr 2	6：50pra	Mo	Ajir 3	5：47am	783	24			1057
73505	29	Tu	閵和 2	7：58аm	Tı	May 2	6：31pm	848	124			1033
73507	30	We	fay 31	10：06pra	T／1	Jon 1	7：1うam	905	222			909
73508	30	Fr	Jtit 30	1：12pm	Fr	Jun 30	7：59m	932	248			647
73509	29	Su	Jul 30	4：44am	Su	Jui 30	8：43m	909	225			359
73510	30	Mo	Allo 28	7：53pm	同0	Aug 28	9：27m	850	125			134
73511	29.	We	Sep 27	10：03am	We	S¢n 27	10：11ant	783	19			08
73512	30	Th	Oot 26	$11: 06 \mathrm{pm}$	Tin	0ct 26	$10: 55 \mathrm{pm}$	733		31	11	
73513	29	Sa	Nov 25	11：19am	Sa	Noy 25	11：392n	701		103		20
73514	30	Su	Dee 24	11：00pm	Mo	Duc 25	12：23am	669		135		123

7351529 Tu Jan 23 10：09am Tu Jan 23 1．07mm 7351630 We Feb 21 8：38pm Th Feb 22 1：5icm $\begin{array}{llll}73517 & 29 & \mathrm{Fr} \text { Mar } 23 & 6: 34 \mathrm{am} \\ \mathrm{Fr} & \mathrm{Mar} 23 & 2: 35 \mathrm{pm}\end{array}$ 7351 s 29 Sa Apr 21 4：30pm Su Apr 22 3：19aril 73519 30 Sul mlay^{21} 3：15am No May 21 4：038m $73520 \quad 30$ Tu Jun 19 3：31pm We Jun $20 \quad 4: 47 \mathrm{am}$ 7352129 Th Jul 19 5：29am Th Jif 19 5：319m 3352230 Fr Aug 17 8：50pm Sa Aus 18 6：15ani 7352330 Su Sep $1612: 56 \mathrm{pm}$ Sif Sep 15 6：59pm 7352429 Tit fet 16 5：10am Tit Det 26 7：43a！n 7352530 We Nov 14 8557pm We Nov $148: 27 \mathrm{pm}$ \％3526 30 Fr Dec I4 11：46am Fr Des 14 9：1lam

629		215	
596		248	
596		248	
645		159	
736		28	
858	114		
921	237		
966	322		
974	330		
947	303		
	205		

All things considered，it seems best to start with the moon nearest the present（moon No． 73740 ；April 3，1935），but to take advantage of the eclipse cycle data，and thus start three hours earlier than moon No． 73740 indicates．Com－ paring the records of these two moons we find that No． 73590 was 10 hours 35 minutes ahead of the mean，while No． 73740 was but 7 hours 35 minutes ahead of it；the difference is 3 hours． Therefore the start is made at Jerusalem at Wednesday，April 3， 1935 A．D．，at 11：35：52 a．m．（instead of $2: 35: 52 \mathrm{p} . \mathrm{m}$ ．on the same day）， so that the answer when obtained will be as nearly exact as possible．Any date in the remote past may now be sought with confidence．

Method of Calculating Lunations

Problem：Find the date of lunation nearest the autumnal equinox of the year 4129 B．C． Answer： $6,062 \frac{1}{2}$ years from the above starting point is October 2， 4129 B．C．，at 11：35：52 p．m． In $6,0621 / 2$ years there are at least $6,0621 / 2 \times 365$ normal days，which are $2,212,8121 / 2$ days ；in the 60 unbroken centuries，counting 24 leap years to each century，there are 1,440 more days；in the fragment of the $42 d$ century B．C．there were 7 leap days；in the portion of a century in which this generation now lives there have been 8 leap days；there were also 14 so－called quadricentesi－ mal leap years（being the years B．C． 4000,3600 ， $3200,2800,2400,2000,1600,800,400,1$ ，and A．D． $400,800,1200$ ，and 1600 ，brit not the year 1200 B．C．）．Total leap days， 1,469 ．Total days for $6,0621 / 2$ years， $2,214,2811 / 2$ ．

There are approximately 12.3682 lunations each year．In the $6,0621 / 2$ years（multiplying） the correct number is found to be 74,983 luna－ tions．In a lunation there are $2,551,442,864976$ seconds；in 74,383 there are $191,314,840,344.4-$ 95408 ，which at 604,800 seconds to the week， 86,400 to the dar， 3,600 to the hour，and 60 to the minute，resolves into 316,327 weeks 3 days 3 hours 12 minutes 24.495408 seconds．

The starting point having been on a Wednes－ day（April 3，1935）at 11：35：52 a．m．，the time of the lunation in 4129 B．C．is 3 days 3 hours 12 minutes 24.495408 seconds earlier in the week than Wednesday，and is therefore on Sunday at 8：23：27．504592 a．m．In these problems the decimal fractions are preserved and carried along，as they afford protection against errors and provide methods of checking results．

As to the day of the month：In the $6,0621 / 2$ years the total days were found to be 2,214, －

月100n	Days	Actuai			Mean			影ins． DVer	Compared with next SIow Fast		Compared with Mean Slow Fast	
			Date	Time		Gate	Tima	29 Ds				
1918 A．D．												
73527	29		Jan 13	33 1：01am	Sa	Jan 12	9：55pm	689		115	306	
73528	29		Feb 11	11 12：30pm	Mo	Feal 11	10：39am	587		257	151	
73529	30		Mar 12	12 10：17pm	Tu	閐ar 12	$11: 23 \mathrm{pm}$	522		402		106
73530	29		Apr 11	11 6：59am	Th	Apr 11	12：07pm	507		417		508
73531	30		May 10	10 3：26pm	Sa	May 11	12：51am	542		342		925
73532	29		Jun＇ 9	$912: 28 \mathrm{am}$	Su	Jun 9	1：35pm	619		225		1307
73533	27		Jul 8	\＆10：47ant	Tu	Jul 9	2：19am	728		36		1532
73534	30		Aug 6	$610: 55 \mathrm{pm}$	We	Aug 7	3：03．pm	854	130			26.8
73535	30		Sen 5	5 1：09pm	Fr	Sep 6	3：47am	931	337			1438
73536	29		Oct 5	5 5：30am	Sa	Oct 5	4：31pm	1077	513			1101
73537	30		Nov 3	$311: 27 \mathrm{pm}$	Mo	Hov 4	5：15am	1097	533			$5 \div 8$
73538	30		Det 3	3 5：44pm	Tu	Dec 3	5：59pm	1025	421			
1919 A．D．												
73539	30		Jan 2	$210: 49 \mathrm{am}$	Th	Jan 2	6：43am	853	159		406	
73540	29		Feh 1	1 1：32am	Fr	Jan 31	$7: 27 \mathrm{pm}$	724		40	605	
73541	29		Har 2	2 1：36pm	Su	Mar 2	8：11am	594		250	525	
73542	30		Mar 31	$3111: 30 \mathrm{pm}$	Mo	Mar 31.	8：55pm	505		419	235	
73543	29		Apr 30	7：55am	We	Apr 30	9：39am	462		502		1
73544	29		May 29	29 3：37pm	Th	May 29	10：239m	461		503		ϵ
73545	30		Jun 27		Sa	Jun 25	11：07am	503		416		15
73545	29	Su	Jui 27	7 7：46am	Sa	1uli 27	11：51pm	616		228		こここ5
73547	30		Aug 25	25 6：02pm	Tu	Aug 26	12：35pm	777	13			$2 \underline{1}$
73548	29	We	Sep 24	24 6：59am	Th	Scp 25	1：19am	966	322			13
73549	30	Th	Det 23	311105 mm	Fr	Bet 24	2：03pm	1120	556			9
73550	30	Sa	Nov 22	22 5：45pin	St	Nov 23	2：47am	1175	651			5.
73551	30	Mo	Dec 22	22 1：20pm	Ho	Dec 22	3：31pm	1112	548			211

$$
1920 \text { A. } \mathrm{D}_{\mathrm{a}}
$$

73552	30	We	Jan 21	75：5am	We	Jan 21	4：15am	968	324		327
73553	29	Fr	Feb 20	12：00am	Th	Fat 19	4：59pm	801	37		701
73554	30	Sa	Mar 20	1：21pm	Sa	Mar 20	5：43am	647		157	733
73555	29	Mo	Apr 19	12：05am	Su	Apr 18	6：27 pm	522		402	S -1
73556	29	Tu	May 18	8：50am	Tu	May 18	7：11am	436		523	35
73557	29	We	Jun 16	4：06pm	We	Jun 16	7：55pm	404		6 CO	
J3558	30	Th	Jul 15	10：50pm	Fr	Jul 16	8：39am	439		525	
73559	29	Sa	Aug 14	6：09am	Sa	Aug 14	9：2\％pm	548		336	
73560	30	Su	Sep 12	$3: 17 \mathrm{pm}$	M0	Sep 13	10：07am	718		46	
73561	29	Tu	Oct 12	3：15am	Tu	0ct 12	10：51pm	915	231		
73562	30	We	Nov 10	6：30pm	Th	Nov 11	11：35am	1079	515		
73563	30	Fr	Dec 10	12：23 pm		Det 1					

1921 A．D．
7356430 Su Jan 9 7：52am Su Jan 9 1：03pm 1150626 7356529 Tu Feb \＆3：02am Tu Feb 8 1：47am 1052 448 7356630 We mar $98: 34 \mathrm{pm}$ We Mar 9 2：31pm 856 212 7356729 Fr Apr 811：30am Fr Apr 8 3：15am 717 $\begin{array}{llllllll}73568 & 30 & \text { Sa May } 711: 27 \mathrm{pm} & \text { Sa May } 7 & 3: 59 \mathrm{pm} & 553\end{array}$ $\begin{array}{llllllllll}73569 & 29 & \text { fino Jun } 6 & 8: 40 \mathrm{am} & \text { Mo Jun } 6 & 4: 43 \mathrm{am} & 441 \\ 73570 & 29 & \text { Tu JuI } & 5 & 4: 01 \mathrm{pm} & \text { Tu Jul } & 5 & 5: 27 \mathrm{pm} & 402\end{array}$ $\begin{array}{llllllllll}73570 & 29 & \text { Tu JuI } & 5 & 4: 01 \mathrm{pm} & \text { Tu Jul } & 5 & 5: 27 \mathrm{pm} & 402 \\ 73571 & 30 & \text { We Aug } & 310: 43 \mathrm{pm} & \text { Th } & \text { Aug } & 4 & 6: 71 \mathrm{am} & 435\end{array}$ 7357130 We Aug $310: 43 \mathrm{pm}$ Th Aug $46: 11 \mathrm{am}$ 7357229 Fr Sep $2 \mathbf{2}^{2} 5: 58 \mathrm{am}$ Fr Sap 26 6：55pm 73573 30 Sa oct 1 2：51pm Su Oct 2 7：39am 7357429 Mo 0ct 31 2：04am Mo Oct 3 I $8: 23 \mathrm{pm}$ 7357530 Ta Nov 293.49 pm We Noy $30 \quad 9.07 \mathrm{am} \quad 827103$ 7357630 Th Des 29 8：04am Th Dec 29 9；51pm 1089 525

1922 A．D．
73577 29 Sa Jañ 28 2：13am Sa Jan 28 10：35am 1140616 7357830 Su Feb 26 9：13pm Su Feh $2611: 19 \mathrm{pm} 1095531$ 7357930 Tu Mar 28 3：28pm Tu Mar 28 12：03pm 961317 $\begin{array}{llllllll}73580 & 29 & \text { Th Apr } 27 & 7: 29 \mathrm{am} & \text { Th } & \text { Apr } 27 & 12: 47 \mathrm{am} & 780 \\ & 16\end{array}$ $\begin{array}{llllllll}73581 & 30 & \mathrm{Fr} \text { May } 26 & 8: 29 \mathrm{pm} & \text { Fr May } 26 & 1: 31 \mathrm{pm} & 616 & 2\end{array}$ $\begin{array}{lllllllllll}73582 & 29 & \text { Su Jun } 25 & 6: 45 \mathrm{am} & \text { Su Jua } 25 & 2: 15 \mathrm{am} & 507 & 417 & 430 \\ 73583 & 29 & \text { Mo Jul } 24 & 3: 12 \mathrm{pm} & \text { Mo Jul } 24 & 2: 59 \mathrm{pm} & 467 & 457 & 13\end{array}$ 73584 30 Tu Aus $2210: 59 \mathrm{pm}$ We Aug 22 3：43am 484 $\begin{array}{lllllllll}73585 & 29 & \text { Th Sep } 21 & 7: 03 \mathrm{am} & \text { Th } & \text { Sep } 21 & 4: 27 \mathrm{pm} & 542 \\ 73586 & 30 & \text { Fr } & \text { Oct } 20 & 4: 05 \mathrm{pm} & \text { Sa } & \text { Oct } 21 & 5: 11 \mathrm{am} & 626\end{array}$ $\begin{array}{llllllllll}73587 & 29 & \text { Su Nov } 19 & 2: 31 \mathrm{Lam} & \text { Su Nov } 19 & 5: 55 \mathrm{pm} & 734 \\ 73588 & 30 & \text { Mo Dec } 18 & 2: 45 \mathrm{pm} & \text { Tu } & \text { Dec } 19 & 6: 39 \mathrm{am} & 861 & 137\end{array}$

1923 A．D．
7358929 We Jan 17 5：06ann We Jan $17 \quad 7: 23 \mathrm{~mm} \quad 986342$ 7359030 Th Feb 15 9：32pm Fr Feh 16 8：07am 1064500 7359130 Sa Mar 17 3：16pm Sa Mar 17 8：51pm 1057453 7359230 Me Apr 16 8：53am Mo Aps 16 9：35am 970326 7359329 We May 16 1：03am Tu May $1510: 19 \mathrm{pm} 844120$ 7359430 Th Jun 14 3：07pm Th Jun 14 11：03am 723 7359529 Sa Jifll4 3：10am Fr Jul $1311: 47 \mathrm{pm} 632$ 73596 29 Su Aug 12 1：42pm $\begin{array}{llll} & \text { Stín Aur } 1212: 31 \mathrm{pm} & 576\end{array}$ $\begin{array}{lllllll}73597 & 30 & \text { Mo Sep } 1011: 18 \mathrm{pm} & \text { Ta } & \text { Sep II } & 1: 15 \mathrm{am} & 553 \\ 73598 & 29 & \text { We Oct } 108: 3 \mathrm{kam} & \text { We } & \text { Oct } 10 & \text { I：59pm } & 561\end{array}$ $\begin{array}{llllllll}73598 & 29 & \text { We Oct } 10 & 8: 3 \mathrm{kam} & \text { W8 } & \text { Oct } 10 & 1: 59 \mathrm{pm} & 561 \\ 73599 & 30 & \text { Th Nov } 8 & 5: 52 \mathrm{pm} & \text { Fr } & \text { Noy } 9 & 2: 43 \mathrm{am} & 603\end{array}$ $\begin{array}{llllllllll}73599 & 29 & \text { Sa Dee } 8 & 3: 55 \mathrm{am} & \text { Sa } & \text { Dee } & 8 & 3: 27 \mathrm{pm} & 678\end{array}$

	244	
41404		
212323		
308111		
331		157
323	528	
241	851	
126	1132	

Moen Days Date Actual Time Date Time
Mins．With noxt with Mean Hins，with next with Mean
over Siow Fast Siow Fast 29 Ds hr mí hr mi hr mi hr mí 7360130 su Jan $6 \quad 3: 13 \mathrm{pm}$ Mo Jan 7 A．D．

 \begin{tabular}{llllllll}
73603 \& 30 \& We fer \& 5 \& $5: 03 a m$ \& Tu Feit \& 5 \& $4: 55 \mathrm{pm}$

\hline

 73604 30 Fr Apr 4 9：42am Fr Apr 4 6：23 pm 7360529 Su May 4 1：25am Su foy 4 7：07am 7350630 Mo Jun 2 4：59pm Mo Jun $2 \quad 7: 51 \mathrm{pm}$

73506 \& 30 \& Ho Jun 2 \& $4: 59 \mathrm{pm}$ \& Mo

73607 \& 29 \& We jul 2 \& $7: 51 \mathrm{pm}$

\hline
\end{tabular} $\begin{array}{llllllll}73607 & 29 & \text { We jul } 2 & 8: 00 \mathrm{am} & \text { We } & \text { Jul } 2 & 8: 55 \mathrm{am} \\ 7360 \text { 3 } & 30 & \text { Th Jui } 31 & 10: 07 \mathrm{~mm} & \text { Th } & \text { Jul } 31 & 9: 19 \mathrm{~mm}\end{array}$ 7360929 Sa Aug $3011: 02 \mathrm{am}$ Sa Aug $3010: 03 \mathrm{am}$ 7351030 Su Sen $2810: 41 \mathrm{pm}$ Su Sop 23 10：47pm 7351129 Tu 0ct 28 9：22am Tu fot 2311 31am 7351230 We Noy 26 7：41pm Th Nev 27 12：15am 7361329 Fr Dee 26 6：11am Fr Des 26 12：59pm

770	05			
860	1	36		
919	2	35		
943	2	59		
934	2	50		
901	2	17		
847	1	23		
775	11		48	
699		105	59	
641		203		
619		225		

1925 A． 0.
7361430 Sa Jan 24 5：10pm Su Jan 25 1：43am 7251529 Mo Feb 23 4：37am Mo Fab 23 2：27pm $73 \in 1630$ Tu Mar 24 4：23pn He War 25 3：11am 7361729 Th Apr 23 4：53am Th Apr 23 3：55pm 7361530 Fr May 22 6：13pm Sa May 23 4：35am $\begin{array}{llllll}73619 & 30 & \text { Su Jun 21 } & 8: 42 a m & \text { Su Jun } 21 & 5: 23 \mathrm{pm}\end{array}$ 72620 Tu Jui 21 12：05am Tu Jui 21 5：07am 7352130 Wo Aug 19 3：40 pm We Aug 19 6：51pm 73522 29 Fr Sap 18 6：37am Fr $\operatorname{Scp} 18$ 7：35am $\begin{array}{lllllll}73623 & 30 & \text { Sa 0ut } 17 & 8: 31 \mathrm{pm} \text { ．Sa Det } 17 & 8: 19 \mathrm{pm}\end{array}$ 73624 29 No Nov 16 9：23am Mo Nev 16 $9: 03 \mathrm{am}$

1926 A．U．

0.											
73626	29	Th	Jan 14	9：00am	Til	Jan 14	10：31am	645		159	131
73627	30	Fr	Feb 12	7：45pm	Fr	Fés 12	11：15pm	600		244	330
73528	2.	Sa	Mar 14	5：45am	Su	（atar 14	11：59am	576		308	614
72529	30	R0	Apr 12	3：21pm	Tu	Apr 13	12：43an	579		305	922
73630	23	Wo	may 12	1：00am	We	may 12	1：27pm	693		111	1227
73531	30	Th	Jun 10	12：33pm	Fr	Jan 11	2：11am	773	14		1338
73532	29	Sa	Jul 10	1：10am	Sa	fal 10	2：55pm	833	159		132
73533	30	Su	Aug 8	4：14．pm	Ho	Aus 9	3：39am	956	312		1125
「ことう．	30	Tu	Scp 7	8：10am	Tu	Sep 7	4：23pm	988	344		81
72635	29	Th	Get 7	12：38am	Th	Oct 7	5：07am	981	337		429
73536	30	Fr	Noy 5	4：5\％pm	Fr	Nov 5	5：51pmi	938	254		
735\％7	29	Su	Dec 5	8：37an	Su	Dec 5	6：35am	856	132		

Tミ538 30 Mo Jan 3 10：53pm Mo Jan 3 7：19p

687		117
711		53
745		19
800	36	
869	145	
923	239	
935	251	
897	213	
834	110	
772	08	
727		37
690		114

1252
1116

06
209
434

699	105	59	06
641	203	209	
619	225	214	434
630	21	648	

77

17

| 73640 | 30 | Th Mar | 3 | $9: 50 \mathrm{am}$ | Th Mar | 3 | $8: 03 \mathrm{am}$ | 631 | 213 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | | | | | | | | | | | 7シ5：1 29 Sa Apr 2 6：4 am Sa Apr 2 9：31am $735 \div 229$ Su May 1 3：05pm Su May $110: 15 \mathrm{pm}$ $-3543 \quad 30 \mathrm{Ho} \mathrm{May} 3011.37 \mathrm{pm}$ Tu May 3110.59 mm $735+330$ mo May $3011: 31 \mathrm{pm}$ Tu May $3110: 59 \mathrm{am}$ $\begin{array}{lllllll}756 \div 4 & 30 & \text { We Jun } 29 & \text { 8：57am } & \text { We Jum } 2911: 43 \mathrm{pm} \\ 736 \div 5 & 29 & \mathrm{Fr} & \mathrm{Jul} 29 & 8: 01 \mathrm{am} & \mathrm{Fr} & \mathrm{Jul} 29 \\ 12: 27 \mathrm{jm}\end{array}$ － 10 Fr Jil 29 s．01am Fr Jul 2.27 jm 7902 $735 \div 530$ Sa Aug 27 9：11am Su Aua 23 1：11am 925241 $735 \div 7$ 29 서0 Sep 2б 12：35am Win Sep 26 1：55pm 1046442 $\begin{array}{llllllllll}735 \div 8 & 30 & \text { Tu } & \text { Oct } 25 & 6: 02 \mathrm{pm} & \text { We } & 0 c t & 26 & 2: 39 \mathrm{am} & 1112 \\ 548\end{array}$ 7364930 Th Nov $2412: 24 \mathrm{gm}$ Th Nov 24 3：23mm 1084520 7355029 Sa Dec $246: 38 \mathrm{am}$ Sa Dec 24 4：07am 966322

$152 S$ A．D．

73651	30	Su	Jan 22 10：44pm	Su	Jan 22	4：51pm	802	38		553	
73552	29	Tu	Ful 21 12：06mm	Tu	Feb 21	5：35am	648		156	631	
73553	30	He	Mar 21 10：54pm	We	Mar 21	6：19\％m	536		348	435	
73654	29	Fr	Apr 20 7：50am	Fr	Apr 20	7：03am	469		455	47	
73555	29	Sa	May 19 3：39pm	Sa	May 19	7：47pm	448		516		408
73656	30	Su	Jun $1711: 07 \mathrm{pm}$	Mo	Јип 18	8：31am	473		451		924
73657	29	Tu	jul 17 7：00am	Tu	Juil 17	9：15pm	554		330		1415
73558	30	We	Aug 15 4：14pm	Th	Aug 16	9：59am	692		112		1745
73559	29	Fr	Sep 14 3：46am	Fr	Son 14	10：43pm	875	151			1857
72660	30	Sa	Oct 13 6：21pm	Su	Cet 14	11：27am	1059	455			1706
73561	30	Mo	Nov 12 12：00 nn	Tu	fov 13	12：11am	1171	647			1211
73652	30	We	Dec 12 7：31am	We	Det 12	13：55mm	1162	638			524

-365329 Fr 1929 A．D．
-1061
$\begin{array}{llllllllllll}72664 & 30 & \text { Sa Fet } 9 & 8: 20 \mathrm{pm} & \text { Sa Feb } 9 & 2: 23 \mathrm{pm} & 882 & 158 & 557\end{array}$
$\begin{array}{rlllllllll}1035 & 73665 & 29 & \text { Mo Mar } 1111: 02 \mathrm{am} & \text { Mo Mar Il } & 3: 07 \mathrm{am} & 716 & 48755\end{array}$
$\begin{array}{lllllllllll}535 & 73566 & 30 & \text { Tu Arr } 910: 55 p m & \text { Tu Apr } & 9 & 3: 51 \mathrm{pm} & 574 & 310707\end{array}$
$2 \quad 73667$ Th May 9 g：32am Th May 9 4：35am $459 \quad 455357$
$\begin{array}{lllllllllll}73658 & 29 & \text { Fr Jum } 7 & 4: 21 \mathrm{pm} & \text { Fr Jun } 7 & 5: 19 \mathrm{pm} & 411 & 553 & 58\end{array}$

		Actual		Pean			Compared Mins．with mext			Compared with mean Slow Fast	
Pion	Days	Data	T1916		Date	Time	29 DS	hr mil	lr mi		hr mil
1936 A．${ }^{\text {d．}}$											
73750	29	Fr Jan 24	9：43am	Fr	Jan 24	5：27am	684		120	416	
73751	30	sa Féb 22	9：07pm	Sa	Fed 22	$6: 11 \mathrm{pm}$	572		312	258	
73752	29		6：39am	Mo	Mar 23	6：55an	499		425		16
73753	29	Tu api 21	2：58pin	Tu	Asp 21	7：39pm	432		442		441
73754	30	We My 20	12：00m	Th		8：23am	520		404		923
73755	29	Fi jeala	7：40na	Fr	Jun 19	9：07pm	604		240		1327
73756	30	Sa Juil3	5：848．19	sil	J119	9：51am	722		42		1607
73757	29	Mus Ag 27	$5: 45 \mathrm{~mm}$	［10	А 1317	10：35m	869	135			1640
73758	33	Ta Sen 15	8005\％	W8	Sep 16	11：19am	999	355			1513
73759	30	Th cetis	12：45pm	Fr	cet 16	12：03an	1102	533			1118
73700	30	3a mor 14	7：07an	Sa	Hov 14	12：97ра	1123	559			540
73761	29	Mato Devil	1：E0an	Who	Dee 14	1：31am	1032	428		19	

1031 A．.

CALCULATION TABLES

73639	30	TI	Fíl 17	3：36pm	T！	Fcb 17	8：43m	1120	5			507
73590	30	Tif	Rat 19	10：16am	Th	Hat 19	9：272m	3029	425		49	
73601	29	S3	Apr 28	3：25am	5	Apr 17	10：11．mm	868	144		514	
73692	30	Su	Hay 17	5：5331in	51	Way 17	10：55an	694		110	658	
7.3693	20	Tu	10316	5：27am	P1．0	Jun 15	11：39pm	553		326	548	
73604	29	แ\％	fal 15	2：45pm	We	Sul 15	12：23991	487		437	222	
73655	30	T ${ }_{1}$	A野 131	10：52pm	Fi	Aug 14	1：07am	479		445		215
73695	29	Sa	Sap 12	6：5］am	Sa	Stp 12	1：51pm	520		404		700
73697	3.3	St	vet 11	3：35pm	Mo	Cot 12	2：350m	5 59		255		1104
7.3698	29	Tu	Boy 10	1：20am	Ta	Hev 10	3：19pm	$6 \% 1$		123		1359
73699	30	We	Dec 2	22：418m	TH	Dec 10	4，03am	793	29			1522

1932 A．0．													
73700	29	Fr	Jan 8	8 1：54am	Fi^{\prime}	lan	3	4.47 mm	916	232			2453
73701	30	Sa	Fob 6	5 5：10pm	S！	Feb	7	5：31am	1019	415			1221
73702	30		Mar 7	710.09 mm	城	Prar	7	6：15m	1057	453			806
73703	29	Wa	Arr 6	6 3：46am	We	Apr	6	6：59\％m	2011	407			313
73704	30		May 5	58037 pm	Th	限的y	5	7：43im	904	220		54	
73705	30	\＆a	Jun 4	$411: 41$ 鉎	§a	Itar	4	8：27am	784	20		314	
73706	29	［193	14］ 4	4 12：45am	Su	Sul	3	9：11 m	632		122	334	
73707	29	Tu	Aud 2		Tu	A 4	2	9：55an	613		231	212	
7570%	30	Wio	Aus 31	10：20mm	W0	Aug	31	10：39pmi	575		309		19
73709	29	Fr	Ser 30	7：55am	Fs	Seti	301	11：23an	555		315		328
73710	30	Sa	Gci 29	9 5：21pmi	St	Cot	30	12：07an	587		257		646
73711	29	Mo	Hov 28	3 3：08am	Ro	Noy	23	12：51pm	639		205		943
73712	30		Der 27	7 J .477 mm	Wo	Des		1：35an	713		46		1148

804	40		1234
876	352		1154
958	234		1002
929	245		723
915	231		443
831	157		212
825	101		
753		11	45
654	120	35	
639	205		45
629	215	250	

I934 A．D．

73725	30	H0	Jan 15	4：02pm	Mo	Jam 15	i1：D7pm	668		138		705
73725	29	We	Febla	3：08am	We	Febl 14	11：51am	685		119		843
73727	30	Th	開at 15	2：33pm	Fi^{1}	Mar 15	12：35am	709		55		$10 \mathrm{G2}$
7372\％	29	Sa	Ag： 14	2：22am	Sa	ADr 14	1：19mm	753		11		1057
73729	30	Su	May 13	2：55pm	龶	1ay 14	$2: 03 \mathrm{am}$	822	58			1108
73730	23	Ta	Jual 12	4：37am	Tu	Jun 12	2：47\％m	894	210			1010
73731	30	We	JuI 11	7：21pm	Th	J112	3：37am	940	256			800
73732	30	Fr	Adg 10	11：11am	Fr	AUS 10	4：15pm	934	250			504
73733	29	Su	Sep 9	2：45am	\＄u	Sen 9	$4: 59 \mathrm{am}$	855	201			214
73734	30	Mo	Det 8	5：30pm	Mo	Cet 8	5：43pin	819	55			33
73735	29	We	Hov 7	7：09am	We	Ney 7	6：27an	761		03	42	
73735	30	Th	Dec 6	7：50pm	Th	Dec 6	7：11pin	715		49	39	

－	$1935 \mathrm{A}$.											
	73737	29	Sa	јan	5 7：45am	\＄a	jan 5	5 7：55an	667		137	10
	73738	30	$8 \pm$	Feb	3 6：523m	Sa	Feb 3	3 8：30pm	613		231	247
	73739	29	Tu	Mar	5 5：05am	Tit	Par 5	5 9：23am	571		313	418
	73740	30	H	Apr	3 2：36pm	We	Api 3	3 10：07pm	56.5		319	731
	73741	29	Fr	May	3 12：01ам	Fr	筒ay 3	3 10：51am	616		228	5050
	73742	29	Sa	Juth	110：17am	Sa	Jun 1	111：350m	712		52	1318
	73743	30	Sı	Iun 3	$3010: 09 \mathrm{~mm}$	Mo	Jut 1	1 12：19pm	823	104		1410
－	73744	30	Tu	Jul 3	$3011: 57 \mathrm{~mm}$	We	1ui 3I	1 103ant	929	244		1306
	73745	29	IT	Allg 2	29 3：25am	Th	A 129	1：47！日	989	345		1022
	73746	30	$F r$	Sep 2	27 7：54mm	Sa	Sep 28	2：31ant	1006	402		637
	73747	30	Su	Cst 2	27 12：40mm	Sy	¢0¢ 27	7 3：15pm	951	337		235
	73748	29	T	Nov 2	25 5：01am	Tu	Nov 26	3：59am	913	229		

GHART FOR GHAUGING OVER THE DAYS AND HOURS OF THE GREGORIAM GALENDAR TO THE DAYS AND HOURS OF THE GALENDAR OF IEHOVAH GOD

$2811 / 2$. In the 74,983 lunations there were 20. 292 days, or $101 / 2$ more. The correct day of tie month is therefore September 22, which is 192 days back from October 2, at 11:35:52 1 . The full answer is that in the autumn of B.C. the new moon rose at, Jerusalem two, 8:23:27.504592 a.m., Sunday, September 22.

"So Teach Us to Number Our Days"

In the 90th Psalm, verse 12, in his prarer there recorded, Moses, the man of God, includ: a petition, "Teach us to number our dars:" Surely the days of God are precions enough that once a year their number may be taken into account. Their grand total to date is considerably less than two and a quarter millions. a figure which, in these days, stated in dollars, is, in some quarters, considered small.

The year which begins in the spring of the year 1935 A.D. and ends in the spring of the year 1936 A.D. is the Year of Ransom (or. Y.R.) 1903. The year which began in the spring of the year 4028 B.C., and ended in the spring of 4027 B.C., was the year Before Ransom (or, B.R.) 4060 .

Dates in March-December (inclusive) of any B.C. year are transformed into B.R. dates by the addition of 32 years to the B.C. date. Dates in January and February of any B.C. year are transiormed into $B \cdot R$. dates by the addition of 33 rears to the B.C. date.
From the spring of 4028 B.C. to the spring of A.D. 1935 is $(4028-1935-1 \Longrightarrow) 5,962$ years. From the spring of Before Ransom 4060 to the Year of Ransom 1903 is $(4060+1903-1=) 5,962$ years.
The vernal equinoxes should be numbered, rear by year. They come but once a year. Counting as No. 0 the one that occurred in the spring of the year Before Ransom 4060 (4028 B.C.) the total number to and including the one in the spring of the Year of Ransom 1903 (A.D. 1935) is but 5,962. Surely it is not a laborious task to keep annual record of these gifts o_{\perp}^{Ω} God.

The Calendar of Jehovah God

The calendar of Jehovah God first appeared in the Year Book of Jehovah's witnesses for the year 1935 , page 168 . The page which there appeared is here reproduced, with some slight alterations found advisable.

Jehovah's Year of Ransom 1903

Redemption	$*$	$*$	$*$	$*$	$*$	$1 \dagger$	2
First Month	3	4	5	6	7	8	9
(Exodus 12:2)	10	11	12	13	14	15	16
No. 73740	17	18	19	20	21	22	23
	24	25	26	27	28	29	

| Life | | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Second Month | | | | | | | |
| No. 73741 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| | 30 | | | | | | |

Peace

Eighth Month No. 73747

King $\quad \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
Seventh Month No. 73746

Order				1	2	3	
Ninth Month	4	5	6	7	8	9	10
No. 73748	11	12	13	14	15	16	17
	18	19	20	21	22	23	24
	25	26	27	28	29		

Logos
Tenth Month
No. 73749

3	4	5	6	7	8	9

10111213141516
17181920212223
24252627282930

Jehovah	1	2	3	4	5	6	7
Eleventh Month	8	9	10	11	12	13	14
No. 73750	15	16	17	18	19	20	21
	22	23	24	25	26	27	28
	29						

Temple		1	2	3	4	5	6
Twelfth							
Nonth	7	8	9	10	11	12	13
No. 73751	14	15	16	17	18	19	20
	21	22	23	24	25	26	27^{*}
	$28+29$	30					

FJehovah's Year of Ransom 1904 begins with this day, corresponding to Sunday, March 22, 1936. It is Edenic day No. 2177940 .

Note: Lifeday, Redemption 14, 1903 Y.R., really begins at 6:00 p.m. of Wednesday, April 17, 1935 A.D., and was so shown in the calendar as originally published in the 1935 Year Book.

Lightday, the first day of the week, is commemorative of the great gift of light in creative epoch No. 1. (Genesis 1:3) For a full account of the work of this and the other creative days, see the Watch Tower publication Creation. Concerning this work a gentleman in Paterson, N.J., whose brother is a clergyman, said, "When I obtained possession of this book I hated God; when I had read it I loved Him."

Heavenday, second day of the week, is commemorative of the gift of an atmosphere, necessary to sustain the life of breathing creatures.Genesis 1:8.

Earthday, third day of the week, is commemorative of the making of the beautiful home which God made for man and other breathing creatures.-Genesis 1: 10-12.

Starday, fourth day of the week, is commemorative of the unfoldment of the magnificent pageantry of the heavens, suns, moons and stars inconceivable in number and beauty; the matcllless spectacle of the universe. (Genesis 1:16) "Praise ye him, sum and moon: praise him, all ye stars of light."-Psalm 148:3.

Lifeday, fifth day of the week, will ever be commemorative of the great epoch in which the Creator first bestowed upon earthly creatures the unspeakable boon of life.-Genesis 1:20-22.

Mansday, sixth day of the week, will ever remind man of the gracious act of God in making the human creature and will remind him of the time when he was not in existence. (Genesis $1: 26,27$) It was not at all necessary to the happiness of God that such a creature as man should ever have lived.

Godsday, seventh day of the week, reminds man for ever of the source of all his joys and hopes and the eternal resting place of his lore. -Genesis 2:2, 3.

The hours of the day, as God arranged them, are six hours ahead of those days which man starts at midnight (and by which he rudely assumes to rend each beautiful night in twain). The hours of night are 12 ; the hours of daylight are 12. The first hour of the 24 -hour period begins with the hour 12:00 D. (or, Day), and ends at 1:00 N. (or, Night). The sixth hour ends at midnight, 6:00 N. The twelfth hour is the last hour of the night, and there, $12: 00 \mathrm{~N}$., begins the daylight period of the day. It stands midway between midnight and the succeeding noon, which point, 6:00 D., is properly called the close of the 6 th hour of the day. The 9 th hour of the
day ends at 9:00 D., commonly designated 3:00 p.m. The day ends with the 12th hour, at 12:00 D.

"Man Became a Living Soul"

"The secret things belong unto [Jeliorah] our God: but those things which are retealed belong unto us, and to our children for erer." (Deuteronomy 29:29) None may sar at just what time "Jehovah God formed man of the dust of the ground, and breathed into his nostrils the breath of life; and man became a living soul" (Genesis 2:7, A.R.V.), but this series of articles contains the strong evidence that it was in the spring of the year 4060 Before Ransom (4028 B.C.).
The evidence has already been presented that the vernal equinox that year was at $5: \leq 1 D$., Lifeday, Temple 28,4060 B.R. (3: 41 pm. Thursdar, March 21, 4028 B.C.). The net moon appeared about 29 hours subsequentir. : 55 J ., Godsday, Temple 30, 4060 B.R. E:5.5 p.m., Friday, March 22,4028 B.C.). If it subsequently appears that Jesus, the Second Adam. Nas born into the world about the ninth hour of the night (heretofore called three o'clock in the morning) would it be unreasonable to rererentir kold the thought that the first Adam mas comrefed about the same hour? That he was created sometime before sundown of that day certairs seems to be suggested by the reference to the "sisth day" in Genesis 1: 31. These two erents. fotinox and net moon, rarely come so close trgether as they did on this occasion, and ther onae in the order that one would expect, if the creation of man occurred midway between them.

Concealed from clear vision behine the mists, the first moon shining over Adam ras moon No. 0, month Redemption, and it mar have been that even before that first month was ended he had need of the hope contained in God's mysterious statement to the great adversary, "I will put enmity between thee and the woman, and between thy seed and her seed; it shall bruise thy head, and thou shalt bruise lis heel." (Genesis 3:15) There is no record as to the number of the days of innocence and happiness in Eden.

Using the Six-Thousand-Year Calendar

Glance now at the six-thousand-year calendar. Note the letter "H" in the year 3793 B.C. (3825 B.R., 235th vernal equinox). The year is the year of the birth of Enos, Adam's grandson. The Scriptures say that "then began men to call
themselves by the name of Jehovah". (Genesis 4:26, margin) Then, while Adam had yet to live 695 years, hypocrisy had already begun in the earth. Adam at this time was but 235 years of age.

Glance again at the six-thousand-year calendar and note the letter "M" in the year 3341 B.C. (3973 B.R., 687 th vernal equinox). Adam at this time was 687 years of age, but still had 243 years before he finished his course. Methuselah was born in this year. It is as certain as anything can be that Methuselah and Adam knew each other intimately for at least two hundred years. What the one knew, the other learned; what God had told the one, Adam, was (one would think) certainly told by him to the other, Methuselah. There is but one link necessary to connect Methuselah with Abraham; he (Shem) was contemporaneous with them both.

Using the six-thousand-year calendar again, note the "A" in the year 3098 B.C. (3130 B.R., $930 t h$ vernal equinox), the time of Adam's death; note the "E" which indicates that the godly Enoch was translated only 57 years later. It would be good to connect all the lettered points by ruled lines, so that explanations of the calendar may be made readily to friends. It will be
apparent that Adam had the privilege of living with Enoch 308 years, long enough for them both to learn much.

Note the " $\$ 1$ " in the year 2470 B.C. (2502 B.R., 1558 th vernal equinox); this is the year of Shem's birth. From then until the "D" (for the Deluge and Methuselah's death) in the year 2373 B.C. (2405 B.R., 1655th vemal equinox), a period of over 97 years, Shem had abondant opportunities to learn all Methuselah knew.

Referring to the table containing list of "Lumations Ushering in the Years or Periods Which Contain the Most Importent Events of History", it shows a new moon rising at 3:21 D., Earthday, Edenic day No. 604848, precursor of God's month No. 20482, 1656 该 vemal equinox, 2404 B.R. (9:21 a.m., Tuesday, March 26, 2372 B.C.).

But as the accome of the Flood is the first place in the Scriptures where montis are mentioned, and the question of when and how the months are to be reckoned arises, it is desirable that not only the days of the lunations, but the hours as well, should be determined as accurately as possible. To this end, use is made again of the eclipse cycles.
(To be continued)

[^0]: *Master chart, from which this greatly condensed outline was drawn, is 15 feet 3 inches long; on file at the Golden Age office, where it may be seen on application.

